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ABSTRACT

Contemporary Magnetic Resonance imaging technology has enabled structural,

anatomical and functional assessment of various organ systems by allowing in-vivo

visualization of those organs in terms of the biophysical parameters of the tissue.

MRI still suffers from the slow image acquisition. The prolonged scan time enforces

trade-offs between image quality and image acquisition time, often resulting in low

spatial resolution, low signal to noise ratio, presence of artifacts resulting from pa-

tient or physiological motion. Therefore, the inverse problems that arise from MR

image reconstruction tend to maximize image quality from minimally acquired signal

observations. We study study the manipulation of the number of observations, based

on the knowledge of the underlying image structure .

We start with studying an existing two step acquisition technique that seems

to produce high quality reconstructions of dynamic MR images. We consider the

recovery of a matrix X, which is simultaneously low rank and joint sparse, from

few measurements of its columns using a two-step algorithm. Here, X captures a

dynamic cardiac time-series. Our main contribution is to provide sufficient conditions

on the measurement matrices that guarantee the recovery of such a matrix using a

particular two-step algorithm. We illustrate the impact of the sampling pattern on

reconstruction quality using breath held cardiac cine MRI and cardiac perfusion MRI

data, while the utility of the algorithm to accelerate the acquisition is demonstrated

on MR parameter mapping.

In the next study, another structure is explored, where the underlying static image

is assumed to be piece-wise constant. Here, we consider the recovery of a continuous

domain piecewise constant image from its non-uniform Fourier samples using a con-

vex matrix completion algorithm. We assume the discontinuities/edges of the image

are localized to the zero levelset of a bandlimited function. The proposed algorithm

reformulates the recovery of the unknown Fourier coefficients as a structured low-rank
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matrix completion problem. We show that exact recovery is possible with high prob-

ability when the edge set of the image satisfies an incoherency property, dependent

on the geometry of the edge set curve.

In the previous two studies, the acquisition time burden is manipulated by exploit-

ing the inherent structure of the image to be recovered. We call this the self-learning

strategy, where the structure is learned from the current set of measured data. Fi-

nally, we consider exemplar learning, where population generic features (structures)

are learned from stored examples or training data. We introduce a novel frame-

work to combine deep-learned priors along with complementary image regularization

penalties to reconstruct free breathing and ungated cardiac MRI data from highly un-

dersampled multi-channel measurements. This work showed the benefit in combining

the deep-learned prior that exploits local and population generalizable redundancies

together with self-learned priors, which capitalizes on patient specific information in-

cluding cardiac and respiratory patterns. is facilitated by the proposed framework.

v
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PUBLIC ABSTRACT

Contemporary Magnetic Resonance imaging technology has enabled structural,

anatomical and functional assessment of various organ systems by allowing in-vivo

visualization of those organs in terms of the biophysical parameters of the tissue.

Modern MRI still suffers from the slow nature of image acquisition, affecting patient

comfort and compliance. The prolonged scan time enforces trade-offs between image

quality and image acquisition time, often resulting in low spatial resolution, low signal

to noise ratio, presence of artifacts resulting from patient or physiological motion.

Therefore, the inverse problems that arise from MR image reconstruction tend to

maximize image quality from minimally acquired signal observations. We study this

problem in a generic image reconstruction scenario, where the number of observations

can be manipulated based on the knowledge of the structure of the underlying object

of interest.

In this thesis, this problem is tackled from various angles. We start with studying

existing clever acquisition techniques that seem to produce high quality reconstruc-

tions of dynamic MR images. These clever acquisition schemes have existed in the

literature without proven guarantees of unique recovery. We developed theoretical

performance guarantees, specifying the measurement burden in the scheme, suffi-

cient to reconstruct high-quality images, under certain signal properties like, spatio-

temporal redundancy and sparsity. These properties arise from the targeted problem

that involves imaging the dynamic time series of a heart.

Next, we considered the case where the underlying images are assumed to be piece-

wise constant and hence the recovery is studied in terms of the geometric complexity

of the edge-structure of the image. This is unlike the existing techniques where

the structural properties are enforced after discretizing the image on a grid. It was

observed that the measurement burden for perfect recovery can be expressed in terms

of the edge-structure complexity of the image.
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In the previous two techniques the acquisition time burden is manipulated by ex-

ploiting the inherent structure of the image to be recovered. That is, desired image

reconstruction quality is achieved despite expediting the image acquisition (or mini-

mizing the measurement burden), by utilizing the knowledge of the structure of the

image to be recovered. We call this the self-learning strategy, where the structure is

learned from the current set of measured data. Finally, we considered exemplar learn-

ing, where population generic features (structures) are learned from stored examples

or training data. We have demonstrated the advantage of combining self-learned

or patient specific learning with exemplar learning in accelerating the acquisition of

free-breathing cardiac MR reconstruction, while maintaining image reconstruction

quality.
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2.1 Simulated low rank and joint sparse matrix recovered using the two-step
scheme. Adjacent clustering was used for the variable measurements. SER
is plotted against normalized common and variable measurements. Good
recovery is expected when the total measurements are high. The convex
optimization scheme failed for the top rows with low values of m1, which
is indicated by black color. . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Sampling matrices (a) Gaussian random matrix (standard normal & not
shown in Fig 2.2 a), one and 3 horizontal lines in k-space, 1 and 3 vertical
lines in k-space and 5 radial lines (separated by the golden angle) in k-
space were used to estimate the row subspace of the breath-held, r = 20
(b) and free-breathing, r = 30 (c) NCAT dataset [104]. Row subspace
estimation accuracy defined in (2.30), E is observed against increasing
number of common measurements, t for above measurement schemes. t
is varied by varying the undersampling in each trajectory. E increases
significantly and saturates after t = r. In agreement with our results
in Section III, accurate row space estimation is ensured after the no. of
common measurements exceed the sparsity of the data matrix. . . . . . . 30

2.3 Illustration of the sampling patterns used in the numerical validations.
We cluster the columns into N/r distinct partitions as shown in the bot-
tom row in three different ways. In the adjacent partitioning, r adjacent
columns are grouped into a cluster. In the periodic clustering strategy,
columns separated by N/r are grouped into a single cluster, while the
cluster membership is assigned randomly in the last example. The same
sampling pattern is chosen for all the columns in the same cluster. Note
that here r = s = 5, N = 25, common lines = 4 (in red) and variable lines
= 10 (in green) are used for illustrative purposes, the actual parameters
used for each experiment is specified later. . . . . . . . . . . . . . . . . . 31
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2.4 Impact of the different clustering strategies on the recovery of breath-held
cardiac MRI (CINE) data using the two-step algorithm. We retrospec-
tively under-sample the data in the Fourier space, corresponding to an ac-
celeration of 4. (a) corresponds to the original (fully sampled dataset).The
first four columns show 4 frames from the cardiac time series. The last
column is the time profile along the horizontal orange line shown in the
first column. (b-c) The rows below correspond to Row 2; Adjacent parti-
tioning, Row 3: Periodic partitioning, Row 4: Random partitioning. The
parameters of the reconstruction are assumed rank, r = 10, group size, s
= 10, common + variable radial lines = 10+15. The regularization param-
eters of both the methods are chosen to yield the best possible recovery,
measured by the `2 error. For k-t SLR, the Schatten p-value used is 0.8,
hence a non-convex k-t SLR. Since the signal is periodic, the adjacent
pattern yielded the best possible recovery as expected. We observe that
the non-convex k-t SLR reconstructions are not too sensitive to the spe-
cific sampling pattern. However, we observe that the non-convex k-t SLR
takes around 240 s to converge, while the two-step algorithm is around
six fold faster (39 s). These experiments show that the performance of
the two-step algorithm can be quite comparable to that of the non-convex
k-t SLR, when the sampling pattern is chosen well. . . . . . . . . . . . . 41

2.5 Variation of reconstruction performance of the two-step algorithm with
different measurement settings for the cardiac CINE experiment in Fig.
2.4. (a-c) SER of the reconstructions with the algorithm in Section 2.2.3
for all the 3 patterns at various common and variable lines used to under-
sample the breath-held cardiac data. Each block on the grid corresponds
to a specific artificial undersampling of the raw k space data with a certain
number of common and variable lines and the value in that grid is the SER
for that reconstruction. We observe that very few common lines are often
needed to obtain good recovery. We also observe that the periodic pattern
gives the worst performance for all sampling parameters as expected. . . 42

xii



www.manaraa.com

2.6 Impact of clustering strategies on the recovery of myocardial perfusion
MRI data using the two-step algorithm: We consider the recovery of my-
ocardial perfusion MRI reconstructions from single channel acquisitions
with an acceleration 1.75. Four different images in the fully sampled
datasets and a time profile is shown in (a). The results of the two-step
recovery algorithm in Section 2.2.3 corresponding to different partitioning
are shown in the following rows of (c). We also show comparisons with
k-t SLR for comparison in (b). The rows correspond to Row 1: Adjacent
partitioning, Row 2: Periodic partitioning, Row 3: Random partition-
ing. The parameters of the reconstruction algorithm are assumed rank,
r = 9, group size, s = 3, common + variable radial lines = 13+39. The
regularization parameters in each case are optimized to obtain the best
possible reconstruction quality. For k-t SLR, the Schatten p-value used is
0.8, hence a non-convex k-t SLR. We observe that the non-convex k-t SLR
takes around 131 s to converge, while the two-step algorithm is around
six fold faster (35 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Variation of reconstruction performance of the two-step algorithm with
different measurement settings for the myocardial perfusion experiment in
Fig. 2.6. Each block on the grid corresponds to an artificial undersampling
of the raw k space data with a certain number of common and variable
lines and the value in that grid is the SER for that reconstruction. We
observe that the performance of the adjacent pattern is lower than that of
the other two, especially with very few variable lines. . . . . . . . . . . . 44

2.8 (a) 2x2 pattern for SENSE recovery. (b) For two-step recovery and non-
convex k-t SLR: A1−A4 are repeated 5 times, across 10 TE and 10 TSLs,
for each slice. (c,d) T1,ρ and T2 maps at axial, coronal and sagittal views
obtained from a full brain reconstruction. Total undersampling = 0.16,
common samples = 0.08, r = 4. (e-f) show corresponding maps from the
non-convex k-t SLR recovery. (g,h) show maps from SENSE recovery with
2x2 undersampled prospective data. The parameters of both k-t SLR and
two-step algorithm were optimized to get the best possible tissue maps.
For k-t SLR, the Schatten p-value used is 0.1, hence a non-convex k-t SLR.
Some representative gray and white matter pixels are highlighted with the
T1,ρ and T2 values in seconds in the same color. The run-times for non-
convex k-t SLR and two-step reconstruction for each slice (averaged over
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3.1 Annihilation of a piecewise constant function as a multiplication in spatial
domain (top) and as a convolution in Fourier domain (bottom). The
partial derivatives of a piecewise constant function are supported on the
edge set. If there is a bandlimited function µ that is zero along the edge set,
then the spatial domain product of µ with the gradient ∇f = (∂xf, ∂yf) is
identically zero. In Fourier domain, this is equivalent to the annihilation
of the arrays j2πkxf [kx, ky] and j2πkyf [kx, ky] by 2-D convolution with a
finite filter determined by the Fourier coefficients µ̂. . . . . . . . . . . . . 50

3.2 Construction of the structured matrix lifting T (f̂ ) considered in this work.
From a rectangular array of the Fourier coefficients f̂ [kx, ky] of a continu-

ous domain image f(x, y), the weighted arrays kxf̂ [kx, ky] and kyf̂ [kx, ky]

are constructed. The matrices Tx(f̂ ) and Ty(f̂ ) are then obtained by
extracting all vectorized patches from the weighted arrays, and loading
these into the rows of Tx(f̂ ) and Ty(f̂ ). The resulting matrices Tx(f̂ ) and

Ty(f̂ ) have a block Toeplitz with Toeplitz blocks structure. Finally, T (f̂ )

is formed by vertically concatenating the blocks Tx(f̂ ) and Ty(f̂ ). . . . . 53

3.3 Illustration of edge set incoherence measure ρ. In (a) are the level-sets of

trigonometric polynomial µ0 bandlimited to Λ0 of size 3 × 3. These curves

all have the same bandwidth, Λ0, but come in different sizes. In (b)-(d) we

show R = 24 nodes on the curve giving the indicated bound on incoherence

parameter ρ defined in (3.26), assuming a filter Λ1 of size 7 × 7. Observe that

the incoherence measure increases as the curve gets smaller. This indicates the

smaller curves have a significant sampling burden. . . . . . . . . . . . . . . . 64

3.4 Phase transition experiments. We generated random piecewise constant
images with known edge-set bandwidth and study the success rate pro-
posed structured low-rank matrix completion scheme under two condi-
tions: in (a) we vary the filter size Λ1 while keeping the edge-set band-
width K0 fixed, in (b) we vary the edge-set bandwidth K while keeping
the filter size fixed. Examples of the randomly generated data are shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Box plots of recovery error using noisy structured low-rank completion
(3.20) on undersampled synthetic data with added noise. We plot the
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CHAPTER 1
INTRODUCTION

The encapsulating theme of this thesis is to study inverse problems in MRI re-

construction. Due to the slow nature of the MR acquisition, certain inconvenient

trade-offs are encountered between the spatial resolution, temporal resolution, signal

to noise ratio etc. This leads to budgeted measurements of the MR signal and hence

the MR image reconstruction problem is often an ill-posed inverse problem. This

ill-posedness dictates maximizing the image reconstruction quality, from a limited set

of signal measurements. The key to solving such a problem is exploiting the prior

information about the signal of interest, or in other words, exploit the underlying

structure of the image. These structures can be learned from the limited measure-

ments of the particular signal to be recovered, termed self-learning strategy. They can

also be learned from measurements acquired from other examples or training data,

similar to the signal of interest, termed as exemplar learning strategy. To this effect,

in this thesis, we study three structures in their corresponding three applications that

covers the above two strategies.

We first introduce a two step algorithm with theoretical guarantees to recover a

jointly sparse and low-rank matrix from undersampled measurements of its columns.

The algorithm first estimates the row subspace of the matrix using a set of common

measurements of the columns. In the second step, the subspace aware recovery of the

matrix is solved using a simple least square algorithm. The results are verified in the

context of recovering CINE data from undersampled measurements; we obtain good

recovery when the sampling conditions are satisfied.

Next, we derive theoretical guarantees for the exact recovery of piecewise constant

two-dimensional images from a minimal number of non-uniform Fourier samples using

a convex matrix completion algorithm. We assume the discontinuities of the image

are localized to the zero level-set of a bandlimited function, which induces certain
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linear dependencies in Fourier domain, such that a multifold Toeplitz matrix built

from the Fourier data is known to be low-rank. The recovery algorithm arranges

the known Fourier samples into the structured matrix then attempts recovery of the

missing Fourier data by minimizing the nuclear norm subject to structure and data

constraints. This work adapts results by Chen and Chi on the recovery of isolated

Diracs via nuclear norm minimization of a similar multifold Hankel structure. We

show that exact recovery is possible with high probability when the bandlimited

function describing the edge set satisfies an incoherency property, and we demonstrate

the algorithm on the recovery of undersampled MRI data.

Finally, we introduce a model-based reconstruction framework with deep learned

(DL) and smoothness regularization on manifolds (STORM) priors to recover free

breathing and ungated (FBU) cardiac MRI from highly undersampled measurements.

The DL priors enable us to exploit the local correlations, while the STORM prior en-

ables us to make use of the extensive non-local similarities that are subject dependent.

We introduce a novel model-based formulation that allows the seamless integration of

deep learning methods with available prior information, which current deep learning

algorithms are not capable of. The experimental results demonstrate the preliminary

potential of this work in accelerating FBU cardiac MRI.

We now introduce and motivate these inverse problems in the context of their

corresponding applications in MRI reconstruction.

1.1 Self-learning strategy

1.1.1 Structure: spatiotemporal redundancy in dynamic MR images

The recovery of matrices that are simultaneously low-rank and jointly sparse from

few measurements has received considerable attention in the recent years, mainly in

the context of the of dynamic MRI reconstruction [73,77]. In this context, the columns

of the matrix correspond to vectorized image frames, while the rows are the temporal

profiles of each voxel. While there is considerable theoretical progress in problems
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such as recovering jointly sparse vectors or low-rank matrices, the recovery of ma-

trices that are simultaneously low-rank and jointly sparse have received considerably

less attention. Recently in [43] Golbabee et al., have developed theoretical guaran-

tees for the recovery of a matrix of rank r and which has only k non-zero rows using

low rank and joint sparsity priors from its random Gaussian dense measurements.

Unfortunately, the dense measurement scheme, where each measurement is a linear

combination of all matrix entries is not practical in dynamic imaging; each measure-

ment can only depend on a single column of the matrix. Another alternative is the

multiple measurement vector scheme (MMV), where all the columns are measured

by the same sampling operator [20]. This scheme offers a factor of two gain over

the independent recovery of the columns, when the matrix is full rank; the gain is

minimal when the rank of the matrix is far lower than the number of columns. This

is clearly undesirable since the columns are highly redundant in the low-rank setting;

one would expect significant gains in this case.

We consider a two step strategy to recover a simultaneously low-rank and jointly

sparse matrix from the measurements of its columns. Specifically, we propose to

first recover the row subspace of the matrix from a set of common measurements

made on the columns. Once the row subspace is estimated, the subspace aware

recovery of the column subspace simplifies to a simple linear problem. This work is

motivated by two-step algorithms used in dynamic MRI, where the temporal basis

functions are first recovered from the central k-space samples [73]. While excellent

reconstruction performance is reported in a range of dynamic and spectroscopic MRI

applications [73], theoretical guarantees on the recovery of the matrix using this two-

step strategy are lacking. A key difference of the proposed formulation with [73] is

the assumption of joint sparsity, which plays a key role in ensuring perfect recovery.

The joint sparsity of the matrix columns/ image frames is a reasonable assumption

in dynamic imaging, where the image edge locations are approximately not changing
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from frame to frame .

Our results show that the row subspace can be robustly recovered from a few

measurements, which are common for all the columns. The number of common

measurements is dependent on the joint sparsity or rank, which ever is smaller. We

also developed a sufficient condition to guarantee perfect subspace aware recovery of

the matrix, once the row subspace is known. We verify the results using numerical

simulations and demonstrate the utility of the scheme in recovering free breathing

cardiac CINE MRI data. We observe that good recovery is possible when the number

of measurements are comparable to the theoretical guarantees. We also observe that

in addition to providing good guarantees on recovering the matrix, joint sparsity

provides a significant improvement in performance in practical applications.

1.1.2 Structure: Properties of the edge sets of piecewise constant images

The recovery of a linear combination of exponentials from their few uniform sam-

ples is a classical problem in signal processing with extensive applications. Pronys

method, or one of its robust variants, attempts to recover the signal by estimating

an annihilating polynomial whose zeros correspond to the frequency of the exponen-

tials. The finite rate of innovation (FRI) framework [118] extended these methods

to recover more general signals that reduce to a sparse linear combination of Dirac

delta functions under an appropriate transformation (e.g. differential operators, con-

volution). Recently, several authors have further extended FRI methods to recover

such signals from their non-uniform Fourier samples [23, 51, 57, 58, 90] by exploiting

the low-rank structure of an enhanced matrix (e.g. Hankel matrix in 1-D). Perfor-

mance guarantees do exist when the transform is an identity and when the Diracs are

well-separated [23]. The above signal models have limited flexibility in exploiting the

extensive additional structure present in many multidimensional imaging problems.

Specifically, the edges in multidimensional images are connected and can be modeled

as smooth curves or surfaces.
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We have recently introduced a novel framework to recover piecewise polynomial

images, whose edges are localized to smooth curves, from their uniform [91, 92] and

non-uniform [90] Fourier samples; this work generalizes a recent extension of the FRI

framework to curves [95]. We model the piecewise smooth signal as having partial

derivatives that vanish outside the zero level-set of a bandlimited function. This

relation translates to an annihilation condition involving the uniform Fourier samples

of the partial derivatives, which can be compactly represented as the multiplication of

a specific structured matrix with the Fourier coefficients of the bandlimited function.

Our earlier work has shown that the structured matrix is low-rank, and we used

this property to recover the signal from its non-uniform Fourier samples with good

performance. Efficient algorithms that work on the original signal samples rather

than the structured high-dimensional matrix also were introduced [89]. We observe

the signal models in [23, 51, 58] do not include the class of signals considered in this

work.

The main focus of this work is to introduce theoretical guarantees on the recovery

of piecewise constant signals, whose discontinuities are localized to zero level-sets of

bandlimited functions, from non-uniform Fourier samples. Since such signals cannot

be expressed as a finite linear combination of isolated Diracs, the recovery guarantees

in [23] cannot be directly extended to our setting. Specifically, the theory in [23]

relies heavily on a explicit factorization of the enhanced matrix (e.g Vandermonde

factorization of a Hankel matrix in the 1-D case), which is only available when the

number of discontinuities are finite and well separated. Instead, we give a new de-

scription of the row and column subspace of the structured matrix, which allow us to

derive incoherence measures based solely on properties of the bandlimited function

describing the edge set of the image.
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1.2 Exemplar learning strategy

The acquisition of cardiac MRI data is often challenging due to the slow nature

of MR acquisition. The current practice is to integrate the information from multiple

cardiac cycles, while the subject is holding the breath. Unfortunately, this approach is

not practical for several populations, including pediatric and obese subjects. Several

self-gated strategies [39], which identify the respiratory and cardiac phases to bin the

data and reconstruct it, have been introduced to enable free breathing and ungated

(FBU) cardiac MRI. The recently introduced, smoothness regularization on manifolds

(STORM) prior in [97] follows an implicit approach of combining the data from images

in a data-set with similar cardiac respiratory phases. All of the current gating based

methods require relatively long (≈ 1 minute) acquisitions to ensure that sufficient

Fourier or k-space information is available for the recovery.

Several researchers have recently proposed convolutional neural network (CNN)

architectures for image recovery [29, 59, 68]. A large majority of these schemes re-

trained existing architectures (e.g., UNET or ResNet) to recover images from mea-

sured data. The above strategies rely on a single framework to invert the forward

model (of the inverse problem) and to exploit the extensive redundancy in the im-

ages. Unfortunately,this approach cannot be used directly in our setting. Specifically,

the direct recovery of the data-set using CNN priors alone is challenging due to the

high acceleration (undersampling) needed (≈ 50 fold acceleration); the use of addi-

tional k-space information from similar cardiac/respiratory phases is required to make

the problem well posed. Here, high acceleration means reduced scan time which is

achieved with undersampling. None of the current CNN image recovery schemes are

designed to exploit such complementary prior information, especially when the prior

depends heavily on cardiac and respiratory patterns of the specific subject. Another

challenge is the need for large networks with many parameter to learn the complex

inverse model, which requires extensive amounts of training data and significant com-
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putational power. More importantly, the dependence of the trained network on the

acquisition model makes it difficult to reuse a model designed for a specific undersam-

pling pattern to another one. This poses a challenge in the dynamic imaging setting

since the sampling patterns vary from frame to frame.

The main focus of this work is to introduce a model based framework, which

merges the power of deep learning with model-based image recovery to reduce the

scan time in FBU cardiac MRI. Specifically, we use a CNN based plug-and-play

prior. This approach enables easy integration with the STORM regularization prior,

which additionally exploits the subject dependent non-local redundancies in the data.

Since we make use of the available forward model, a low-complexity network with a

significantly lower number of trainable parameters is sufficient for good recovery,

compared to black-box (CNN alone) image recovery strategies; this translates to

faster training and requires less training data. More importantly, the network is

decoupled from the specifics of the acquisition scheme and is only designed to exploit

the redundancies in the image data. This allows us to use the same network to recover

different frames in the data-set, each acquired using a different sampling pattern. The

resulting framework can be viewed as a iterative network, where the basic building

block is a combination of a data-consistency term and a CNN; unrolling the iterative

network yields a network. Since it is impossible to acquire fully sampled FBU data,

we validate the framework using retrospective samples of STORM [97] reconstructed

data, recovered from 1000 frames (1 minute of acquisition).

In this work, we aim to significantly shorten the acquisition time to 12-18 secs

(200-300 frames) by additionally capitalizing on the CNN priors. The main differ-

ence between the proposed scheme and current unrolled CNN methods [53] is the

reuse of the CNN weights at each iteration; in addition to reducing the trainable

parameters, the weight reuse strategy yields a structure that is consistent with the

model-based framework, facilitating its easy use with other regularization terms. In
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addition, the use of the CNN as a plug and play prior rather than a custom designed

variational model [53] allows us to capitalize upon the well-established software engi-

neering frameworks such as Tensorflow and Theano.
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CHAPTER 2
SUBSPACE AWARE RECOVERY OF LOW RANK AND JOINTLY

SPARSE SIGNALS

2.1 Introduction

Recent results on the recovery of structured signals, e.g., sparse vectors and low-

rank matrices from few of their measurements have made significant impact in signal

and image processing. In medical imaging applications, notably MRI [117] and ultra-

sound imaging [120], these results were adapted to significantly improve the spatio-

temporal resolution and reduce the scan time.

Several researchers have proposed to use low-rank priors to recover multidimen-

sional MRI datasets such as in dynamic imaging, parametric mapping, and spectro-

scopic imaging from undersampled data [61, 71, 77, 96]. These methods re-express

the multidimensional dataset as a Casorati matrix, whose columns are vectorized im-

age frames [71]. Since the image frames in many imaging applications are linearly

dependent, the associated Casorati matrix is low-rank. The earliest works in this

direction relied on a two-step method to recover the matrix, where the row/column

subspaces are first recovered from common measurements of the rows/columns of the

matrix (often called as navigators) [61, 71, 96]. The signal is then recovered from all

the measurements using a subspace aware recovery algorithm. The good empirical

performance of these methods have been demonstrated in several multidimensional

MRI applications [11, 24, 61, 96, 119, 125–127]. An alternative to the above two-step

strategy is to recover low-rank matrices is using a single step convex or non-convex

optimization algorithms [41, 43, 49, 76, 77]. A benefit of the latter strategy is that

it may not require specialized sampling patterns; it may yield good recovery from

patterns that are are available on modern scanners (e.g. golden angle radial acqui-

sitions). However, the computational complexity of the two-step algorithm is often

considerably smaller than solving the convex optimization problem, which is especially

relevant while working with large multidimensional datasets. The images in the dy-
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namic dataset are also sparse in appropriate transform domains (e.g. 2-D wavelet

transforms, finite differences). The use of sparsity prior, along with low-rank penalty,

is also seen to provide improved recovery [61,71,76,77,96]. Since the locations of the

discontinuities do not change significantly from frame to frame, the Casorati matrix

may also be modeled as a jointly sparse matrix, as in [25,27,116]. To the best of our

knowledge, sufficient conditions for the recoverability of a low rank and jointly sparse

matrix using the two-step approach, are not available.

In this chapter we theoretically analyze the recovery of a simultaneously low-rank

and jointly sparse matrix using two-step methods in [11]. Our main focus is to derive

sufficient conditions on the sampling pattern that guarantees perfect recovery. Our

analysis also affords an improved understanding of the trade-offs that may enable

better optimization of the measurement scheme and the extension of this framework

to applications beyond MRI. It is assumed that every column of the matrix (which has

rank r and joint sparsity of k), is sampled using a combination of two measurement

matrices Φ and Ai. The matrix Φ is assumed to be the same for each column, while

Ai varies from column to column. A basis set for the row subspace is estimated from

the common measurements of the columns, obtained using Φ. This approach has

similarities to recent matrix sketching methods used to compress large matrices [52,

75]. The estimated row subspace is used in the second step to recover the joint sparse

matrix from all the available measurements using a convex optimization algorithm.

Our results show that the row subspace can be uniquely identified by any Φ that

satisfies spark(Φ) ≥ k + 1, where k is the joint sparsity of the matrix. Our results

also show that almost all Φ matrices with r rows can guarantee the recovery of the

subspace. In many practical applications, we have r << k, when the second result

is quite desirable. Our sufficient condition for successful subspace aware recovery

(second step) relies on partitioning the columns to mutually exclusive clusters. All

the columns in a specific partition are sampled using the same measurement matrix.
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Our results show that X can be uniquely identified if the spark of the concatenation

of the measurement matrices from all clusters is greater than or equal to 2k + 1 and

the rank of each cluster is r. We demonstrate that this condition is sufficiently general

to include a large class of measurement schemes.

This work generalizes our earlier work on the recovery of jointly sparse and low-

rank matrix, where we first recover the column subspace, followed by subspace aware

recovery of the matrix [7]. In [7], we require some of the columns to be sampled

at a high rate (require around O(k) measurements) for column subspace estimation,

followed by very low sampling rate O(r) for the remaining frames [7]. This approach

may not be ideally suited for dynamic imaging applications and has not been used in

the MRI context before, where the time available to measure every frame is limited.

However, this scheme may be useful in other applications such as MR parameter

mapping, or similar applications where the total sampling time is the only constraint.

In this chapter, we focus on the dual approach, where the row subspace is first esti-

mated, followed by row subspace aware recovery of the matrix. This strategy provides

more flexibility in sampling; it can also offer sampling patterns where the sampling

burden is spread evenly across frames. We observe that these two approaches are

equivalent when the joint sparsity of the columns is not assumed. Our theoretical

and experimental results clearly demonstrate the significant gains offered by simulta-

neous exploitation of joint sparsity and low-rank constraints, which are often satisfied

in many practical imaging applications. We now discuss the relation of the results

in this chapter to current literature. Necessary conditions for the perfect recovery

of a low-rank matrix using the two-step algorithm are available in [50]; our focus in

this chapter is on sufficient conditions, which we believe are practically more use-

ful. It is known that that if the navigator matrix (submatrix obtained from common

measurements) and the original matrix has the same rank, then the subspace can be

reliably estimated from the navigators [71]. The analysis in Section 3 of this chapter
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provides sufficient conditions on when the navigator matrix has the same rank as

the original matrix. It is also known that the second step of the two-step recovery

algorithm inherits the theoretical guarantees for `1 regularization as in [27, 61], as-

suming random sampling patterns. However, we observe that most of the patterns

that are widely used in two-step recovery are deterministic and periodic [50, 71]. In

the context of MRI applications, it is stated that the recovery is guaranteed if the

each k-space sample is sampled atleast r times where r is the rank/model order as

mentioned in [71]. The experiments in Figures 4 and 6 shows that this probabilistic

result that is valid for random low-rank matrices may be violated in applications of

practical interest. Specifically, the performance of the two-step algorithm is observed

to be quite different for each pattern, even though each k-space location is sampled

the same number of times in each of the experiments. These experiments also show

the utility of the sufficient sampling conditions for deterministic matrices derived in

Section IV of the chapter, which guarantees the subspace aware recovery of the si-

multaneously jointly sparse and low-rank matrix. In addition, all of the earlier results

are specific to Fourier sampling in the MRI context, while the results in this chapter

are general enough to be applied to other settings.

There are some limited theoretical results for the recovery of matrices that are

simultaneously low-rank and jointly sparse matrix recovery from few measurements

using single step convex algorithms [43]. They assumed that the measurements were

inner products of the structured (low-rank and sparse) matrix with similar sized

Gaussian random matrices. Unfortunately, this approach is not suitable for dynamic

imaging and parameter mapping applications, since each of the measurements can

only involve a specific image frame or column of the matrix in these cases. The

recent work [94] also shows the difficulty in exploiting the simultaneous structure in

the matrix recovery using convex optimization. In this light, we observe that many

of the practical algorithms that exploit simultaneous structure rely on non-convex
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optimization [77]. A single step non convex algorithm (k-t SLR), which penalizes the

non-convex Schatten-p norm, was introduced in [76], which has similarities with the

formulation in [49]. Our experiments and previous work show that such non-convex

algorithms can provide good recovery, similar to the two-step algorithm. However,

we observe that such algorithms do not come up with theoretical guarantees, either

for convergence to the global minimum or the ability to achieve perfect recovery.

2.2 Preliminaries and Objective

We denote the data matrix matrix X ∈ Cn×N by

X =

[
x1 x2 . . . xN

]
. (2.1)

In dynamic imaging applications, n is the number of pixels in each image, while N

is the number of frames in the dynamic data set. Our objective is to recover the

above matrix from undersampled measurements using low-rank and joint sparsity

assumptions.

2.2.1 Signal Model & Assumptions

We consider the recovery of matrices that satisfy the following standing assump-

tion.

Standing Assumption: The matrix X in (2.1) has the following properties.

1. It is jointly k-sparse, i.e. it has at most k non-zero rows.

2. It is low rank. i.e. rank(X) = r with r << k.

3. The columns of X can be clustered into s submatrices Xi; i = 1, .., s, each of

which are of rank r. Specifically, the set {1, · · · , N} can be partitioned into

I1, · · · , Is; the matrix Xi is obtained by combining the columns of X indexed

by Ii, i.e. Xi = [x̃(k)l]l∈Ii such that rank(Xi) = r, i = 1, · · · , s.
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Note that the above set of assumptions are fairly general and can be satisfied by

a large class of matrices, coming from imaging datasets. In many datasets, multiple

different partitioning of the columns that satisfy the standing assumption may be

possible. It is easy to see that the number of clusters satisfy

s ≤
⌊
N

r

⌋
. (2.2)

The best case scenario is when equality holds. A special case of this best-case scenario

is spark(X) = r, when any submatrix of X with r columns has rank r.

Under the standing assumption there exist U ∈ Cn×r, obeying UHU = I, V ∈

CN×r, VHV = I and a positive definite diagonal Σ ∈ Rr×r such that

X = UΣVH . (2.3)

Note that in many multidimensional imaging applications including dynamic

imaging, the location of the edges or features do not change significantly from frame

to frame. Hence, the dataset can be assumed to be jointly sparse in appropriate

transform domains; i.e, the location of the edges/features do not change from frame

to frame. If X is jointly k-sparse, so is U. Should the sequence of x̃(k)i represent an

MRI time series, then the space spanned by the columns of V defines the temporal

basis of these images, and U defines their coefficients. The range space of V is the

signal subspace.

2.2.2 Two-step recovery scheme

We use a two-step approach in [11, 61, 71, 96], to recover X that satisfies the

assumptions. We wish to design observation matrices, Ai and Φ, i ∈ {1, · · · , s} such
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that:

Yi =

 Zi

Ei

 =

 Φ

Ai


︸ ︷︷ ︸

Di

Xi (2.4)

Here, Φ ∈ Ct×n is a measurement matrix that is applied to all the columns. Ai is

exclusive to column contained in the index set Ii; all columns in the same index set

are sampled with the same measurement matrix.

We execute the following 2-step recovery process :

(1) In Step 1, we will use the Zi generated through the common observation matrix

Φ to estimate a full row rank matrix Q ∈ Cr×N , such that X admits the

factorization

X = PQ. (2.5)

Here, P ∈ Cn×r is an unknown jointly k-sparse matrix . As will be evident

later, the null space of X is identical to that of Q and the rows of Q form

a temporal basis for MRI images. Consequently, we will refer to Q as a row

subspace matrix. Note that

rank(P) = r. (2.6)

(2) Having reduced the estimation of X to that of P, we execute Step 2 that uses

all the Yi to estimate P. Observe Yi is generated through Di that has Φ as a

submatrix. In the context of dynamic MRI, the row dimension of Di correspond

to the number of k-space samples acquired in the ith frame. We note that the

row dimension of Di may vary across the index i.

In some settings, X may be sparse in a different basis i.e. for some unitary W,

WX is sparse. In this case the development in the sequel goes through, with X

and U replaced by WX and WU, respectively. For example W could be a matrix

representing the discrete wavelet transform (DWT).
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2.2.3 Numerical Algorithm

We demonstrate the utility of the above framework in recovering dynamic MRI

and MR parameter mapping data from highly undersampled measurements. We use

the sampling scheme described in (2.4). The algorithm to recover the signal X involves

the following steps:

1. We use Q = E, where ZHZ = QQH = ESEH is the SVD of ZHZ, provides

better conditioning in Q. Note that ES1/2 is a valid square root of ZHZ. As

done in [125], removing the scaling term S1/2, provides a better conditioned Q

matrix, justifying the choice.

2. Following the recovery of Q, we recover P by solving the optimization problem

P̂ = arg min
P

s∑
i=1

‖Di PQi︸︷︷︸
Xi

−Yi‖2
2 + λ ‖T(P)‖`21 (2.7)

Here, Xi = PQi are the submatrix corresponding to the ith partition, which

is sampled using the same sampling matrix Di as in (2.4). We note that the

data consistency term can be combined into a single larger `2 norm involving

all the samples. However, this makes it harder to analyze the problem and

come up with sufficient conditions. The partitioning strategy is consistent with

the notations in Section IV. The operator T in (2.7) an appropriately chosen

sparsifying transform or operator and λ is the regularization parameter. The

`21 norm specified by

‖X‖`21 =
n∑
i=1

√√√√ N∑
j=1

|X(i, j)|2 (2.8)

is used to promote joint sparsity of the columns of X as in [27]. We solve

the above problem using the alternating direction method of multipliers [35].

A variable splitting was performed on P by introducing an auxiliary variable
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P = P1. The corresponding algorithm alternates between a conjugate gradient

solution, a shrinkage step and update of Lagrange multiplier.

2.3 Sufficient conditions for subspace estimation (Step 1)

We will now analyze the first step of the algorithm, where we estimate the row

subspace matrix Q in (2.5). With Φ as in (2.4) and X as in (2.3), define

Z = ΦX. (2.9)

Theorem 2.3.1 below shows that the row subspace matrix Q in (2.5) can be estimated

as any square root of ZHZ. It also provides conditions on Φ under which Q and P,

both have rank r.

Theorem 2.3.1. Consider (2.9) with the standing assumption in force. Then, for

every Q ∈ Cr×N , which is a square root of ZHZ; i.e.,

QQH = ZHZ, (2.10)

there is a P ∈ Cn×r, such that (2.5) holds. If spark(Φ) > k then both Q P in (2.5)

have rank r, and P is jointly k-sparse. Finally, with the index set Ii defined in the

standing assumption, define

Qi = [Q̃(k)l]l∈Ii (2.11)

where Q̃(k)l is the l-th column of Q. Then

rank[Qi] = rank[Xi] = r. (2.12)

The proof provided in Appendix A shows that there exists a nonsingular R ∈ Cr×r,

such that:

Q = RVH (2.13)
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and the unknown P is in fact

P = UΣR−1. (2.14)

Observe that the estimation of the row subspace matrix Q (which is not unique)

simply requires estimating any square root of ZHZ. This of course can be accom-

plished by a straightforward SVD. However, the execution of the second step described

in Section 2.4, requires that P in (2.5) have rank r and indeed that (2.12) holds. The-

orem 2.3.1 provides a worst case sufficient condition for this, namely spark(Φ) > k.

This requires that the Φ have at least k rows. However, we now show in Theorem

2.3.2 below that barring pathologies a Φ with only r-rows suffices. When r << k,

this constitutes a considerable saving.

We note that Theorem 2.3.2 refers to the term almost all. This is a standard

term in the literature, e.g. [37]. In particular, we say a condition holds for almost all

Φ ∈ Ct×n, if the set of elements of Φ for which the condition fails has zero volume in

the tn-dimensional space where these elements reside. On the other hand when we

say that a result holds for almost all X ∈ Cn×N with rank r, we are assuming that we

are considering matrices X = X1X2, with X1 ∈ Cn×r and X2 ∈ Cr×N . The ambient

space here is the space of elements of Xi. Almost all such matrices have rank r, and

their product has rank r only if each factor has rank r [67]. Then the volume that has

to be zero for the almost all proviso to obtain, must be in the nr + Nr dimensional

space of the elements of Xi.

Theorem 2.3.2. With the various quantities defined in Theorem 2.3.1, suppose the

standing assumption holds. Then,

(a) for almost all matrices Φ ∈ Ct×n; t ≥ r, the row subspace matrix obtained as

QQH = ZHZ satisfies (2.5) with

rank(P) = rank(Q) = r. (2.15)
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In addition, the Q matrix also satisfies (2.12).

(b) If rank(Φ) = r, then (2.15) and (2.12) hold for almost all X with rank r.

The proof is given in Appendix B. Theorem III.2.(a) shows that almost all Φ ∈

Ct×n, e.g. those with elements drawn from i.i.d. complex Gaussian distributions,

would achieve the desired properties, given any X satisfying the standing assump-

tion. On the other hand, in applications like MRI, one does not have the luxury of

using random observation matrices, but must instead employ submatrices of 2-D DFT

matrices. This underscores the importance of (b) of Theorem 2.3.2 as it shows that

as long as the observation matrix has rank r, it can induce the required conditions

for almost all data matrices X.

Theorem 1 in [50] shows that if the full Casorati matrix and the navigator ma-

trix have the same rank, one can estimate the temporal matrix from the navigators.

However, no sufficient conditions on when the above condition is satisfied (navigator

matrix and the full matrix has the same rank) are available in the literature. The the-

ory introduced above provides sufficient conditions on when the estimated temporal

subspace matches the original one.

2.3.1 Issues of conditioning

The successful recovery of Q, only requires a SVD and can be robustly achieved

without further conditioning requirements. On the other hand, as will be evident in

Section 2.4, the robust execution of the second step benefits from a well conditioned

Q, in turn assured due to (2.13) by a well conditioned R or ΦUΣ. Theorem 2.3.3

shows that such is the case if Φ satisfies the restricted isometry property (RIP) for

k-sparse vectors. We emphasize though, that Q does not have a RIP requirement.

Theorem 2.3.3. Suppose the standing assumption holds and the measurement ma-

trix Φ satisfies the RIP condition for k-sparse vectors, i.e. for all ṽ(k) ∈ Cn and
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‖ṽ(k)‖0 ≤ k,

(1− δk)‖v‖2
2 ≤ ‖Φv‖2

2 ≤ (1 + δk)‖v‖2
2. (2.16)

Then the condition number of R,κ(R) is bounded by

κ(R) ≤
√

1 + δk
1− δk

κ(X) (2.17)

Of course the RIP condition in (2.16) requires that Φ have at least k rows. On the

other hand we can invoke random matrix theory, e.g. [31, Theorem 3.2], to address

the more desirable setting where generically, only r rows are required to achieve a

well conditioned R. Indeed if the entries of Φ are independent, zero mean, complex

Gaussian with unit variance and Φ as t-rows, then under the standing assumption

for a constant M independent of c and for every c > 1

Pr[κ(ΦU) > c] ≤Mc−2(t−r+1). (2.18)

Arguing as in the proof of Theorem 2.3.2 a corresponding result holds for a given Φ

with r-rows and Gaussian X. The constant M , defined in [31], depends on r and t and

is phrased as an expectation. Note that the probability that the condition number

exceeds c declines rapidly with a growing c, depending on t − r + 1, where t is the

number of common measurements.

The image frames in multidimensional imaging applications such as parameter

mapping & dynamic imaging can be modeled as a low-rank dataset since the signal

originates from a finite number of spatial regions (e.g. organs) with distinct time

profiles. Since the number of image regions with distinct intensity profiles are usually

much smaller than the number of edge features separating them, the the rank of

the dataset X is often much smaller than the joint sparsity, k. The above results

show that the row subspace of X can be robustly recovered from Z = ΦX with
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very few measurements. In Fig. 2.2 we compare the accuracy of the row subspace

recovery by varying t for different measurement matrices, e.g., Gaussian matrices and

measurements from radial trajectories on the 2-D Fourier space.

2.4 Sufficient conditions for subspace aware recovery (Step 2)

The previous section shows that the row subspace matrix Q can be recovered as

any square root of of ZHZ, itself obtained by the first set of measurements, (2.9).

In this Section we describe how to leverage the knowledge of Q to estimate P, and

hence because of (2.5) completing the estimation of X.

To put the role of Step II in context we first observe that as X is jointly k-sparse

and has rank r, traditional MMV results that use a single observation matrix to re-

cover X, [20], state that a sufficient condition for recovering X is that the observation

matrix have spark that is no smaller than 2k− r+ 1. As X has N columns, the total

number of observations thus equals

NMMV ≥ (2k − r + 1)N. (2.19)

We will show that the combined number of measurements required to estimate P and

Q and hence X is considerably smaller, particularly when the rank of X is small. We

also observe that our earlier work in [7] employs two measurement matrices and also

requires fewer measurements than (2.19). We contrast this approach with that in [7]

at the end of Section 2.4.

We consider separately, the measurements Yi for each cluster of vectors indexed

by the sets Ii defined in the standing assumption: For each i ∈ {1, · · · , s}

Di Xi = Yi; i = 1, ..s, (2.20)
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With Qi defined in (2.11), the above relations translate to

Di P Qi = Yi.

By conditions assumed in Theorem 2.3.1 (see (2.12)), each Qi has rank r. If Qi has

full row rank r, the pseudo-inverse defined by

Q†l = QH
l

(
QlQ

H
l

)−1
, (2.21)

will satisfy QlQ
†
l = I. Using this relation in (2.20), we obtain



D1

D2

...

Ds


︸ ︷︷ ︸

D

P =



Y1Q
†
1

Y2Q
†
2

...

YsQ
†
s


(2.22)

If D is full rank, P can be recovered even in the absence of joint-sparsity. However,

the sampling requirement is considerably lower when P has at most k nonzero rows

and rank r [20], as stated by the following result.

Theorem 2.4.1. Suppose the standing assumption holds and each Qi, i ∈ {1, · · · , s}

defined in (2.11) has full row rank r. Then one can uniquely estimate P in (2.5) from

the measurement cluster measurements Yi in (2.4) if

spark (D) ≥ 2k − r + 1. (2.23)

Since P is k jointly sparse and has a rank or r, the result follows directly from [20].

Note that the above theorem provides great flexibility in sampling. For example,

the measurement matrices Di need not have the same number of rows, which implies
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that the number of k-space samples per frame may vary from frame to frame. The only

constraint is that the concatenation of the measurement matrices satisfy (2.23). In

addition, the partitions are also not required to be of the same size. The constraint

that Qi; i = 1, .., s have full row rank implies that there are at least r columns in

each partition Xi (equivalently, at least r rows in Qi). The full rank condition on

Qi; i = 1, .., s can be easily ensured if we assume that spark(X) = r + 1, which

implies that any set of r columns of X are linearly independent. In the context of

multidimensional imaging, this implies that any r images in the series are linearly

independent, which is often satisfied by many applications. In practice, it is possible

to choose larger partitions or carefully choose the partitions depending on the prior

information supplied by the physics of the application to ensure that Qi are of full

row rank. We illustrate the impact of the above assumption on the reconstruction,

and show that carefully choosing the partitions depending on the application allows

us to achieve good recovery with relatively few measurements.

We observe that we may choose a single partition with r columns, which are

measured using D, while the rest of the columns are sampled using Φ; the rows of Φ

is a subset of the rows of D. The matrix is uniquely identified, provided spark(D) ≥

2k− r+ 1 and the matrix Q1 is full rank. We observe that this is the same condition

we obtained in our earlier work [7]. As described earlier, this approach results in

an asymmetric sampling pattern, where some frames are measured at a high rate.

Hence, this scheme is not suited for dynamic imaging applications where the time

to acquire the measurement from any frame is limited; it may be more desirable in

other applications such as MR parameter mapping, where there is no such restriction,

while the signal to noise ratio degrade with echo-time. This scheme can accommodate

more symmetric sampling patterns, where the sampling burden is distributed equally

among the frames.
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2.4.1 Measurements required for unique identifiability

The above two-step scheme requires O(r) measurements per column to recover the

row subspace; this adds up toO(Nr) all together. If spark(X) = r+1, we can consider

N/r partitions of r columns each. If all the measurements for subspace aware recovery

were allocated on one cluster, we have 2k measurements/column including the ones

used for subspace estimation. Thus, on total, we need 2kr+r(N−r) = r(2k+N−r)

measurements. Note that this special case of sampling is similar to the our previous

work [7]; where we first estimated the column subspace of X, followed by the column

subspace aware recovery.

The measurements for subspace aware recovery may be distributed equally among

the clusters. In this case, the number of measurements per column is (2k−r)/(N/r) =

r(2k− r)/N . Summing the r measurements/column for row subspace estimation and

the one for subspace aware recovery, we obtain r(2k− r) + rN = r(2k+N − r). Note

that the total number of samples are the same as the previous case, while the number

of samples in each column is small. This symmetric sampling scheme is desirable in

applications such as dynamic imaging, when it is not possible to sample only a few

frames heavily.

The classical MMV scheme requires a total of (2k − r + 1)N measurements for

its unique recovery of a matrix of dimension n×N and rank r and joint sparsity k.

This comes from the spark condition given in [20]. Note that the minimum number of

measurements required for the unique identification is much smaller in the two-step

setting. Specifically, when r << k and large N , one would need ≈ 2kN measurements

with MMV, while with the two-step scheme it is ≈ rN .

Liang et al., have introduced the necessary conditions for the recovery of a low-

rank matrix, which states that that the total number of measurements should be

greater than r(n + N − r) [71]. If we remove the joint sparsity assumption, this

minimum number of measurements agrees with the minimum number of sufficient
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measurements, suggested by our theory. However, note that ours is a sufficient condi-

tion, while the one in [71] is a necessary condition; some measurement schemes with

the above number of samples may not yield perfect recovery.

2.4.2 Guarantees for `1 minimization based recovery of P

Consider now the recovery of P from (2.22) using an `1 optimization. The matrix

P can be recovered either by joint sparse recovery, or the independent sparse recov-

ery of the columns of P. The performance improvement resulting from joint sparse

recovery is expected to be minimal when r << k. It is easy to see that a matrix

D that satisfies the RIP condition [14] for robust `1 recovery of k-sparse vectors will

succeed in recovering P from (2.22).

Step II uses preprocessed measurements in (2.22). However, the preprocessing

step can amplify noise. Specifically, if the condition number of the matrices Qi; i =

1, .., s are high, the recovery of P from noisy measurements using `1 minimization is

challenging. We now derive RIP bounds for the mapping from P to Y.

Theorem 2.4.2. Suppose D in (2.23), satisfies the restricted isometry condition

specified by

(1− δ) ‖x‖2
2 ≤ ‖Dx‖2

2 ≤ (1 + δ) ‖x‖2
2;∀x : ‖x‖`0 ≤ k (2.24)

Furthermore, assume that the maximum and minimum eigenvalues of Qi; i = 1, .., s

are bounded above and below:

η1 =
s

max
i=1

λmax(QiQ
H
i )− 1 (2.25)

η2 = 1−
s

min
i=1

λmin(QiQ
H
i ). (2.26)

and η = max(η1, η2). Then, with ‖ · ‖2 denoting the induced matrix 2-norm for

matrices,

(1− δη) ‖P‖2
2 ≤ ‖Y‖2

2 ≤ (1 + δη) ‖P‖2
2 (2.27)
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for all k-jointly sparse matrices P ∈ Cn×r that are related to Y ∈ Cm×N by the

relation

Yi = Di P Qi; i = 1, ..., s. (2.28)

The proof is in the appendix.

The above analysis shows that good recovery using `1 minimization is guaran-

teed, provided D has adequate RIP bounds and the matrices Qi; i = 1, .., s are well-

conditioned. The condition number of these matrices can be improved by choosing

more columns in each partition than r, which is the minimum possible number. In

addition, prior knowledge can be used to partition the columns in X such that the

columns in each cluster are linearly independent; We demonstrate this approach in

an example in the context of dynamic imaging.

2.5 Numerical validation of sufficient conditions

2.5.1 Two-step recovery from Gaussian random measurements

We first demonstrate the two-step recovery algorithm on a synthetically generated

low rank and joint sparse matrix, with Gaussian random entries. Each realization

of X was generated as X = UVH with a rank of r = 10 and sparsity of k = 25.

Specifically, the matrix U ∈ C80×10 has only 25 non-zero rows, which are chosen as

random Gaussian entries. The matrix V ∈ C100×10 is chosen as a random Gaussian

matrix. Note that a random V matrix will satisfy spark(VH) = r + 1 with high

probability; any clustering where each partition has r = 10 or more columns will

result in well-posed recovery.

We use a measurement scheme specified by (2.4), where Φ and Ai are Gaussian

random matrices. We cluster the columns into 10 partitions, each with ten adjacent

columns (i.e, I1 = {10i − 9, .., 10i}; i = 1, .., 10). The row subspace was recovered

from the common measurements Z, while the CVX toolbox was used [45] to solve for

(2.7) in the second step. We assumed Φ to be a Gaussian random matrix with m1
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rows, while each Ai; i = 1, .., 10 matrices are chosen as Gaussian random matrices

with m2 rows. We compute the signal to error ratio (SER) of the recovered matrix

as

SERdB = 10 log
||Y||2F

||Yest −Y||2F
, (2.29)

where Yest is the estimated matrix and Y is the original matrix.

The SER of the recovery as a function of common and total measurements, m1

and m2 is shown in Fig. 2.1. The SER values are averaged over 100 iterations of

Gaussian random matrices X generated and recovered as mentioned above. Theorem

2.3.2 suggests, we need a minimum of m1 = r and m2 measurements such that:

2k − r ≤ m1 +
m2N

r
=⇒ (2k − r)r

N
≤ m2 +

m1r

N
≈ m2

Hence, we normalize the x axis to m2

(2k−r)r/N and the y axis to m1

r
. We observe that the

two-step algorithm provides good recovery when m1 > r, which confirms Theorem

2.3.2. The results also show that we require m2 ≈ 4(2k − r)r/N for good recovery,

which is in-line with what is reported in conventional compressed sensing literature.

2.5.2 Row subspace estimation (step 1) using Fourier matrices

We considered the recovery using Gaussian random matrices in the previous sec-

tion. We now determine the utility of Fourier sampling patterns for row subspace

estimation when the columns are images, drawn from the numerical cardiac and

torso (NCAT) phantom [104] consisting of a beating heart. This choice is motivated

by the potential application of the framework in multidimensional MRI, where mea-

surements are samples on the 2D Fourier grid. Current two-step methods assume

that the subspace can be estimated from few common Fourier measurements; this

assumption has not been carefully studied. In this simulation, we study the depen-

dence of the accuracy of the row subspace estimate, on the number of samples and
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the sampling patterns. We considered two cases: (i) breath-held CINE with images

of size 100× 100, 20 phases, and 10 heart beats (the Casorati matrix is of dimension

10000×200 with a rank of r = 20]. (ii) free breathing CINE data with images of size

128 × 128, 1500 frames, and a rank of r ≈ 30. In the second case, we observe that

truncating the rank, of the originally high rank dataset to r = 30 results in minimal

distortion.

We obtained the common measurements Z = ΦX with four different Φ matrices, a

Gaussian random matrix, and three submatrices of the 2-D discrete Fourier transform

(DFT) matrix. The DFT samples correspond to (a) 1 horizontal line, (b) 3 horizontal

lines, placed 2 pixels apart (c) 5 radial lines, separated by 120◦, (d) 3 vertical lines,

placed 2 pixels apart, (e) 1 vertical line and (See 2.2 a). The subspace matrix Q

is estimated using the SVD of Z as described before. We determine the accuracy of

the estimated row subspace matrix Q and the actual subspace matrix V using the

following metric:

E(V,Q) =
||(I−QQH)V||22

2||V||22
+
||(I−VVH)Q||22

2||Q||22
(2.30)

Here, the columns of V and Q are assumed to be orthonormal. Note that when the

spaces spanned by the columns of V and Q are identical, the above metric would

be zero. When the two subspaces are orthogonal, E(V,Q) = 1. We plot this metric

against increasing number of common measurements, t for different Φ in Fig. 2.2. We

observe the metric saturates around t = r measurements, irrespective of the specific

choice of Φ. Note that t = r is the number of measurements specified by 2.3.2.

With lower t, in (b), the metric for the single lines suffer, due to limited k-space

coverage. With lower t (but t > r), in (c) the metric for the horizontal lines suffers

slightly. This corresponds to a horizontal projection and hence fails to capture the

vertical motion in the dataset. This effect is absent in (b), because of no significant
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Figure 2.1: Simulated low rank and joint sparse matrix recovered using the two-step
scheme. Adjacent clustering was used for the variable measurements. SER is plotted
against normalized common and variable measurements. Good recovery is expected
when the total measurements are high. The convex optimization scheme failed for
the top rows with low values of m1, which is indicated by black color.

motion (compared to (c)) in any direction. The above experiments show that the

subspace can be reliably estimated from very few common Fourier measurements of

each column of X.

2.5.3 Impact of partitioning on subspace aware recovery (step 2)

We now study the impact of the choice of sampling patterns and partitioning of

frames in different multidimensional imaging applications. Our sufficient condition

in Theorem 2.4.1 relies on grouping columns into clusters, each having full column

rank for unique identifiability. While one can increase the number of columns in each

partition to guarantee this condition, the drawback will be the increased sampling

burden. We now demonstrate that partitioning strategies can be chosen based on

prior information of the image content to minimize sampling burden. Specifically,

the goal is to improve the chances of columns in each cluster to be dissimilar. Note

that this section is just an illustration of how the flexibility offered by the framework
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(a) Trajectories in 2D Fourier space: 1 horizontal line, 1
vertical line, 3 horizontal lines, 3 vertical lines, 5 radial
lines (l-r)

(b) Breath held CINE

(c) Free breathing CINE

Figure 2.2: Sampling matrices (a) Gaussian random matrix (standard normal & not
shown in Fig 2.2 a), one and 3 horizontal lines in k-space, 1 and 3 vertical lines in
k-space and 5 radial lines (separated by the golden angle) in k-space were used to
estimate the row subspace of the breath-held, r = 20 (b) and free-breathing, r = 30
(c) NCAT dataset [104]. Row subspace estimation accuracy defined in (2.30), E is ob-
served against increasing number of common measurements, t for above measurement
schemes. t is varied by varying the undersampling in each trajectory. E increases sig-
nificantly and saturates after t = r. In agreement with our results in Section III,
accurate row space estimation is ensured after the no. of common measurements
exceed the sparsity of the data matrix.
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Figure 2.3: Illustration of the sampling patterns used in the numerical validations.
We cluster the columns into N/r distinct partitions as shown in the bottom row in
three different ways. In the adjacent partitioning, r adjacent columns are grouped
into a cluster. In the periodic clustering strategy, columns separated by N/r are
grouped into a single cluster, while the cluster membership is assigned randomly in
the last example. The same sampling pattern is chosen for all the columns in the
same cluster. Note that here r = s = 5, N = 25, common lines = 4 (in red) and
variable lines = 10 (in green) are used for illustrative purposes, the actual parameters
used for each experiment is specified later.
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can be capitalized; clever sampling schemes that depends on the physiology, similar to

[10,112] may be designed depending on the application. We study three partitioning

strategies, which are illustrated in Fig. 2.3:

1. Adjacent partitioning: Here, we group r adjacent columns into a partition (i.e,

Ii = {ri−r+1, .., ri}; i = 1, .., N/r) in a sequential fashion. The same sampling

pattern is used for all of these columns in the same partition as shown in Fig.

2.3. For example, all the red columns use the pattern outlined by the red border.

This pattern may be ideally suited for periodically changing image content (e.g

breath-held cardiac cine applications), where the adjacent frames are most likely

to be dissimilar.

2. Periodic partitioning: Here, we choose every frame indexed by N/r into the

same cluster (i.e, Ii = {i, i+N/r, i+2N/r, ..}; i = 1, .., N/r). The same sampling

pattern is used for all the columns in the same partition, indicated by the same

color. The second pattern is suited for slowly changing image content (e.g.

myocardial perfusion MRI), where adjacent frames are highly similar.

3. Random partitioning: Here, we populate each cluster by randomly choosing r

columns without replacement.

We first study different partitioning strategies illustrated in Fig. 2.3 in a breath-

held cardiac CINE MRI simulation in Fig. 2.4. We retrospectively undersampled a

fully sampled ECG-gated cardiac CINE dataset acquired on a Siemens 3T TIM Trio

scanner. The scan parameters were: TR/TE = 4.2/2.2 ms, number of slices = 5,

slice thickness = 5 mm, FOV = 300 mm, base resolution = 256, number of phases

= 19, number of channels = 18. The reconstructed frames were repeated so that the

dataset is periodic; the assumption that cardiac cycles are periodic during a short

acquisition window ( 20-30 s) is widely used in the breath-held cine setting with good

success in subjects without arrhythmia. We assumed a single coil acquisition scheme.
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We observe that the classical binning approach used in CINE recovers a single cardiac

cycle. However, several researchers [60, 74, 81, 105] have shown that one can equiva-

lently recover the entire data, exploiting the (pseudo) periodicity of the data. The

raw k space samples were under-sampled according to the patterns described above

and illustrated in Fig. 2.3. For the reconstruction step, the finite difference operator

was chosen as T in (2.7) for all the MR experiments. Fig. 2.4 a shows the original im-

ages at various time points/phases. We observe that the partitioning strategy where

adjacent frames are assigned to the same cluster provided the best results (first row

of Fig. 2.4 c). The periodic pattern (second row) provided the worst results since the

columns in each cluster are linearly dependent. The results also show that while ran-

domization of the patterns provided slightly lower performance, the patterns didn’t

have to be matched to the data. This pattern may be a better fit in applications with

arrhythmia and when the periodicity is unknown. Note that we chose the minimum

number of samples and columns per partition to demonstrate the difference in perfor-

mance. In practice, one would choose more columns per partition and acquire more

measurements per column to ensure good performance. The reconstructions using k-t

SLR (see Fig. 2.4.b) are also shown for comparisons. The k-t SLR parameters were

optimized to get the best reconstruction error. The Schatten p-value obtained was

0.8, hence a non-convex k-t SLR. The reconstructions show that the performance of

the two-step algorithm is comparable to that of the single step non-convex k-t SLR

scheme, when the sampling pattern is properly chosen. While non-convex k-t SLR

seem to be relatively insensitive to the specific sampling pattern, the main benefit

of the two-step scheme over non-convex k-t SLR is the significantly lower computa-

tion time (6 fold lower). Fig. 2.5 show the SER in two-step reconstruction (w.r.t

to the original) for the three patterns at different undersampling rates. Different

undersampling is achieved by changing the number of common and variable radial

lines.
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We illustrate the impact of different partitioning strategies considered in Fig. 2.3

in a gated myocardial perfusion MRI dataset in Fig. 2.6. Similar to the previous

experiment, this is also a simulation to illustrate the trade-offs in the two-step frame-

work. We assumed a single coil acquisition scheme. Since imaging is restricted to

the diastolic phase of each heart beat, the image content changes slowly due to bolus

passage. The fully sampled data was obtained from a subject on a Siemens 3T MRI.

The Cartesian dataset (phase × frequency encodes × time = 90 × 190 × 70) was

acquired using a saturation recovery FLASH sequence (3 slices, TR/TE = 2.5/1.5

ms, sat. recovery time = 100 ms). This was a ECG-gated acquisition with images

acquired only from the diastole phase. The raw k space samples were retrospectively

under-sampled according to the patterns mentioned. Fig. 2.6 a shows the original

images at various progression of contrast. The two-step reconstructions for 3 different

patterns is shown in Fig. 2.6 c. While the differences in performance is not as striking

as in the CINE case, we observe that the adjacent pattern provides reconstructions

with the lowest SER and exhibits some spatial blurring. This is expected since the

collection of neighboring frames tend to be rank deficient. The periodic pattern works

well for the perfusion case as the equidistant frames span the rank r subspace. The

random or the generalized pattern works fairly well in both the cases. The reconstruc-

tions using k-t SLR are also shown in (see Fig. 2.6.b) for comparisons. The k-t SLR

parameters were optimized to get the best reconstruction error; the optimal Schat-

ten p-value was 0.8. The comparisons against non-convex k-t SLR shows that the

two-step scheme can provide comparable reconstructions when the sampling pattern

is properly chosen. As discussed earlier, the main benefit of the two-step scheme over

non-convex k-t SLR is the significantly lower computation time (3 fold lower). Fig.

2.7. shows the SER in reconstruction for various common and variable radial lines

used in undersampling the perfusion data. All the reconstructions were performed in

MATLAB on a desktop computer: Intel Xeon processor (2.40GHz) and 16 GB RAM.
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2.6 Experimental Results

We now illustrate the framework in an important MRI application: acceleration

of parameter mapping in MRI for quantitative imaging. The two-step framework has

been previously considered in the recovery of a single parameter map in [126,127]. The

main difference is the current setting is the joint recovery of T1,ρ and T2 maps. This

dataset was acquired from a healthy subject using a segmented 3D GRE sequence

on a Siemens 3T MRI. The scan parameters were: FOV= 22x22x22 cm3, TR/TE =

5.6/2.53ms, no. of coils = 12 and no. of slices = 128, matrix size = 128× 128× 20.

We used 10 different spin lock times (TSL) to encode the T1,ρ parameter, while 10

different echo times (TE) were used to encode the T2 tissue relaxation parameter

values. Both parameters TE and TSL were sampled uniformly between 0 to 100 ms.

The data was acquired using a 2x2 inplane 3-D undersampling pattern; the readouts

were orthogonal to the slice direction. The sampling patterns are described in Fig

2.8 (a-b). We estimated the coil sensitivity maps from a fully sampled reference scan

using the Walsh method in [121]. We perform a SENSE reconstruction of the 2x2

undersampled data. Post recovery, T1,ρ and T2 maps were estimated using mono-

exponential model, which are shown in Fig. 2.8.c & d. The background (skull and

black space) has been removed just to highlight the relevant anatomical regions.

The above k-space data was further undersampled using a pseudo-random variable

density sampling pattern, to achieve a net acceleration of 1
0.25∗0.64

= 6.25. One-tenth

of the measurements are common for all the frames (corresponding to Φ). The finite

difference operator was chosen as T in (2.7). Since the image content changes slowly,

we assumed a periodic clustering pattern with an assumed rank of four. The row

subspace is estimated using SVD of the common measurements, while the subspace-

aware sparse optimization is performed to recover the images from the undersampled

images based on equation (2.7). The maps shown in Fig. 2.8.a & b are estimates of

the fit. The SER for the SENSE 2× 2 reconstruction compared against the two-step
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result was 12 dB for the T1ρ maps and 13.25 dB for the T2 maps (averaged over

the maps corresponding to the 3 cuts generating the 3 views of the brain displayed).

Along with SENSE, k-t SLR comparisons were performed. The k-t SLR parameters

were optimized to get the best reconstruction error. The Schatten p-value obtained

was 0.1. The SER for SENSE against the non-convex k-t SLR reconstruction was 12.9

dB and 12.8 dB respectively. We applied the same acceleration for non-convex k-t

SLR as we did with the two-step recovery and got comparable results. The literature

suggests T1,ρ and T2 values in the range 85 ± 3s, 109 ± 11s for white matter and

99 ± 1s, 96 ± 9s for gray matter regions, respectively, which is in good agreement

with our findings. The maps we got from the reconstruction of accelerated data is

close to what we got from a 2× 2 undersampled SENSE reconstruction. Also, for all

SENSE, non-convex k-t SLR and two-step reconstructions, the average T1,ρ and T2

values corresponding to the gray matter and white matter regions were in agreement

with the ones mentioned in [9,107] as shown in Fig. 2.8(c-f). Maps from non-convex

k-t SLR results are also shown for an acceleration of 6.25. Some representative gray

and white matter pixels were highlighted with the T1,ρ and T2 values in seconds in

the same color. The run-times for non-convex k-t SLR and two-step reconstruction

for each slice (averaged over 128 slices) were 58.19s and 12.7s respectively, implying a

4.8 fold speedup using the latter. These experiments demonstrate that the conditions

derived in this chapter are sufficient for the two-step algorithm to succeed. However,

the comparisons show that other algorithms (e.g non-convex k-t SLR) may provide

good recovery, even if the two-step recover scheme fails.

2.7 Conclusion

We theoretically analyzed the recovery of low-rank and jointly sparse matrices

from few measurements using the existing two-step algorithm. We introduced suf-

ficient conditions for the recoverability of the row subspace as well as the subspace

aware recovery of the matrix. The results demonstrate quite significant savings in
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number of measurements when compared to the standard multiple measurement vec-

tor (MMV) scheme, which assumes same time invariant measurement pattern for all

the columns/time frames. The insights provided by the analysis indicates that clever

sampling patterns that are optimized to the image content may be used to improve

the performance in a variety of applications. We also demonstrated the utility of

the framework in accelerating MR parameter mapping. In our current analysis, we

haven’t assumed any noise in the measurements. We will address the robustness

analysis, in a future work.

2.8 Appendix A: Proofs

2.8.1 Proof of Theorem 2.3.1

Proof. Define

J = ΦUΣ ∈ Ct×r (2.31)

Since J has r columns and JHJ is Hermitian positive semidefinite, there exists R ∈

Cr×r such that

JHJ = RHR. (2.32)

We now show that under the spark condition on Φ, R is nonsingular. To this end

observe that rank(J) = rank(ΦU) as Σ is nonsingular. We assert that rank(ΦU) = r.

To establish a contradiction suppose rank(ΦU) < r. Hence, there exists a θ 6= 0 such

that ΦUθ = 0. Since U has full column rank, Uθ 6= 0. In addition, since the joint

sparsity of U is at most k, the number of non-zero entries in Uθ is less than or equal

to k. Hence, ΦUθ = 0 iff Φ has k linearly dependent columns. This contradicts

the condition spark(Φ) > k. Thus indeed rank(J) = rank(ΦU) = r. Thus J has full

column rank r and JHJ is positive definite. Thus it has a nonsingular square root

R ∈ Cr×r and P in (2.14) exists.

That Q in (2.13) is a square root of ZHZ follows as from (2.3), (2.9), (2.31) and
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(2.32)

QQH = VRRHVH = VJHJVH

=
(
VΣUH

)
ΦHΦ

(
UΣVH

)
= ZHZ.

Further, from (2.3), (2.14) and (2.13)

PQ = UΣR−HRHVH

= X.

Moreover, P is jointly k-sparse as U is jointly k-sparse and it has rank r as U has

rank r and both R and Σ have rank r. Finally (2.12) follows from similar reasons.

2.8.2 Proof of Theorem 2.3.2

Proof. As Q in (2.10) is a square root of ZHZ, rank(Q) = r if rank(Z) = r. Further,

from (2.13), (2.14) and the standing assumption, rank(P) also equals r if rank(Z) = r.

Thus to show (2.15) it suffices to show that rank(Z) = rank(ΦX) = r.

We will now prove (a) by showing that under the standing assumption, for almost

Φ, ΦX has rank r. Now ΦX has rank less than r iff all r × r submatrices of ΦX

have zero determinants. By definition, each of these determinants is a polynomial

in the elements of Φ [67]. Each such polynomial is either identically zero for all

possible Φ matrices, or the roots of the polynomial are restricted to a manifold of

zero volume [80], [37].

Thus, to prove (a), given any X satisfying the standard assumption, we need to

find just one Φ ∈ Ct×n, t ≥ r for which rank(ΦX) = r. Indeed we construct one such

Φ ∈ Cr×n. For such a Φ, rank(ΦX) = r, iff under (2.3), det(ΦUΣ) 6= 0. Indeed,

under the full column rank condition of UΣ, UΣ = W1 ΛWH
2 . Here W1 ∈ Cn×r and
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W2 ∈ Cr×r obey WH
1 W1 = I, WH

2 W2 = I and Λ ∈ Cr×r is a nonsingular diagonal

matrix. With Φ = WH
1 , ΦUΣ = ΛWH

2 is invertible. This proves (a).

To prove (b) we need to show that given any rank(Φ) = r, rank(ΦX) = r, for

almost all X of rank r. This follows very similarly to the foregoing by working with

XHΦH instead of ΦX, and by finding one X of rank r for which rank(ΦX) = r.

2.8.3 Proof of Theorem 2.3.3

Proof. We have from (2.32),

κ(RHR) = κ(JHJ) =
max‖v‖=1 ‖Jv‖2

2

min‖v‖=1 ‖Jv‖2
2

(2.33)

Define σ2
max and σ2

min as the largest and smallest eigenvalues of Σ. Then as under

the standing assumption, U has at most k nonzero rows and UHU = I, from (2.16)

there obtains:

‖Jv‖2
2 = ‖ΦUΣv‖2

2 ≤ σ2
max‖ΦUv‖2

2 ≤ σ2
max(1 + δk)‖v‖2

2 (2.34)

Likewise,

‖Jv‖2
2 ≥ σ2

min(1− δk)‖v‖2
2 (2.35)

Combining the above equations, we obtain

κ(RHR) ≤ σ2
max(1 + δk)

σ2
min(1− δk)

= κ(X)2 (1 + δk)

(1− δk)
(2.36)

2.8.4 Proof of Theorem 2.4.2

Proof. We have

‖Yi‖2
2 ≤ ‖DiP‖2

2 λmax(QiQ
H
i ) (2.37)
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‖Yi‖2
2 ≥ ‖DiP‖2

2 λmin(QiQ
H
i ) (2.38)

Concatenating the results from all the partitions, we have

‖DP‖2
2 (1− η) ≤ ‖Y‖2

2 ≤ ‖DP‖2
2 (1 + η). (2.39)

Using the RIP property of D, we obtain

(1− δη) ‖P‖2
2 ≤ ‖Y‖2

2 ≤ (1 + δη) ‖P‖2
2. (2.40)
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(a) Original image data and time series

(b) non-convex k-t SLR reconstruction

(c) two-step recovery

Figure 2.4: Impact of the different clustering strategies on the recovery of breath-
held cardiac MRI (CINE) data using the two-step algorithm. We retrospectively
under-sample the data in the Fourier space, corresponding to an acceleration of 4.
(a) corresponds to the original (fully sampled dataset).The first four columns show
4 frames from the cardiac time series. The last column is the time profile along the
horizontal orange line shown in the first column. (b-c) The rows below correspond
to Row 2; Adjacent partitioning, Row 3: Periodic partitioning, Row 4: Random
partitioning. The parameters of the reconstruction are assumed rank, r = 10, group
size, s = 10, common + variable radial lines = 10+15. The regularization parameters
of both the methods are chosen to yield the best possible recovery, measured by the
`2 error. For k-t SLR, the Schatten p-value used is 0.8, hence a non-convex k-t SLR.
Since the signal is periodic, the adjacent pattern yielded the best possible recovery
as expected. We observe that the non-convex k-t SLR reconstructions are not too
sensitive to the specific sampling pattern. However, we observe that the non-convex
k-t SLR takes around 240 s to converge, while the two-step algorithm is around six
fold faster (39 s). These experiments show that the performance of the two-step
algorithm can be quite comparable to that of the non-convex k-t SLR, when the
sampling pattern is chosen well.
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(a) Adjacent pattern (b) Periodic pattern (c) Random pattern

Figure 2.5: Variation of reconstruction performance of the two-step algorithm with
different measurement settings for the cardiac CINE experiment in Fig. 2.4. (a-c)
SER of the reconstructions with the algorithm in Section 2.2.3 for all the 3 patterns
at various common and variable lines used to undersample the breath-held cardiac
data. Each block on the grid corresponds to a specific artificial undersampling of the
raw k space data with a certain number of common and variable lines and the value
in that grid is the SER for that reconstruction. We observe that very few common
lines are often needed to obtain good recovery. We also observe that the periodic
pattern gives the worst performance for all sampling parameters as expected.
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(a) Original image data and time series

(b) non-convex k-t SLR reconstruction

(c) two-step recovery

Figure 2.6: Impact of clustering strategies on the recovery of myocardial perfusion
MRI data using the two-step algorithm: We consider the recovery of myocardial per-
fusion MRI reconstructions from single channel acquisitions with an acceleration 1.75.
Four different images in the fully sampled datasets and a time profile is shown in (a).
The results of the two-step recovery algorithm in Section 2.2.3 corresponding to dif-
ferent partitioning are shown in the following rows of (c). We also show comparisons
with k-t SLR for comparison in (b). The rows correspond to Row 1: Adjacent parti-
tioning, Row 2: Periodic partitioning, Row 3: Random partitioning. The parameters
of the reconstruction algorithm are assumed rank, r = 9, group size, s = 3, common
+ variable radial lines = 13+39. The regularization parameters in each case are op-
timized to obtain the best possible reconstruction quality. For k-t SLR, the Schatten
p-value used is 0.8, hence a non-convex k-t SLR. We observe that the non-convex k-t
SLR takes around 131 s to converge, while the two-step algorithm is around six fold
faster (35 s).
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(a) Adjacent pattern (b) Periodic pattern (c) Random pattern

Figure 2.7: Variation of reconstruction performance of the two-step algorithm with
different measurement settings for the myocardial perfusion experiment in Fig. 2.6.
Each block on the grid corresponds to an artificial undersampling of the raw k space
data with a certain number of common and variable lines and the value in that grid
is the SER for that reconstruction. We observe that the performance of the adjacent
pattern is lower than that of the other two, especially with very few variable lines.
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(a) Sampling
pattern for
SENSE recovery

(b) Periodic clustering pattern for two-step recovery and non-
convex k-t SLR

(c) T1,ρ map with two-step (x 6.25 accelera-
tion, SER = 12 dB)

(d) T2 map with two-step (x 6.25 accelera-
tion, SER = 13.25 dB)

(e) T1,ρ map with non-convex k-t SLR: (x
6.25 acceleration, SER = 12.9 dB)

(f) T2 map with non-convex k-t SLR: (x 6.25
acceleration, SER = 12.8 dB)

(g) T1,ρ map with SENSE: (x 4 acceleration) (h) T2 with SENSE: (x 4 acceleration)

Figure 2.8: (a) 2x2 pattern for SENSE recovery. (b) For two-step recovery and non-
convex k-t SLR: A1 −A4 are repeated 5 times, across 10 TE and 10 TSLs, for each
slice. (c,d) T1,ρ and T2 maps at axial, coronal and sagittal views obtained from a full
brain reconstruction. Total undersampling = 0.16, common samples = 0.08, r = 4. (e-
f) show corresponding maps from the non-convex k-t SLR recovery. (g,h) show maps
from SENSE recovery with 2x2 undersampled prospective data. The parameters of
both k-t SLR and two-step algorithm were optimized to get the best possible tissue
maps. For k-t SLR, the Schatten p-value used is 0.1, hence a non-convex k-t SLR.
Some representative gray and white matter pixels are highlighted with the T1,ρ and
T2 values in seconds in the same color. The run-times for non-convex k-t SLR and
two-step reconstruction for each slice (averaged over 128 slices) were 58.19s and 12.7s
respectively, implying a 4.8 fold speedup using the latter.
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CHAPTER 3
CONVEX RECOVERY OF CONTINUOUS DOMAIN PIECEWISE

CONSTANT IMAGES FROM NON-UNIFORM FOURIER SAMPLES

3.1 Introduction

The direct recovery of continuous domain signals by convex optimization is emerg-

ing as a powerful alternative to traditional discrete domain compressed sensing [6,16,

23]. The ability of these continuous domain “off-the-grid” schemes to minimize dis-

cretization errors makes them attractive in practical applications, where only the low-

pass measurements of the signal are available. The history of such continuous domain

signal recovery schemes dates back to Prony [109] who considered the recovery of a

linear combination of exponentials from its uniform samples. Prony-like algorithms

recover the signal by estimating an annihilating polynomial whose zeros correspond

to the frequencies of the exponentials. Work by Liang et al. [47, 48] and the finite

rate of innovation (FRI) framework [118] proposed a Prony-like approach to recover

a more general class of signals that reduce to a sparse linear combination of Dirac

delta functions under an appropriate transformation (e.g., differential operators, con-

volution) from their uniform low-pass Fourier samples. Recently, several authors have

further extended FRI methods to recover such signals from their non-uniform Fourier

samples [23,51,57,58,90], by exploiting the low-rank structure of an enhanced matrix

built from the Fourier samples (e.g., a Hankel matrix in 1-D). Here by “non-uniform

Fourier samples” we mean sub-sampling the Fourier samples on a uniform grid, as op-

posed to full sampling of a uniform grid traditionally required for Prony-like methods.

Recovery guarantees exist for certain classes of signals sampled non-uniformly when

the signal singularities/discontinuities are isolated and well-separated [16,23,122].

However, the signal models discussed above have limited flexibility in exploiting

the extensive additional structure present in multidimensional imaging problems. In

particular, the edges in multidimensional images are connected and can be modeled

as smooth curves or surfaces. While discrete image representations to capture this
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structure have been the subject extensive research [30,108], similar continuous domain

representations have attracted less attention. We recently introduced a novel frame-

work to recover piecewise polynomial images, whose edges are localized to smooth

curves, from their uniform [91, 92] and non-uniform [90] Fourier samples; our frame-

work generalizes a recent extension of FRI models to curves [95]. We assume that

the partial derivatives of the signal vanish outside the zero level-set of a bandlimited

function, which is only true for piecewise smooth signals. This relation translates to

a linear system of convolution equations involving the uniform Fourier samples of the

partial derivatives, which can be compactly represented as the multiplication of a spe-

cific structured matrix with the Fourier coefficients of the bandlimited function. We

have introduced theoretical guarantees for the recovery of such images from uniform

samples [91,92]. Our earlier work has shown that the structured matrix built from the

Fourier coefficients of piecewise constant images is low-rank [90, 92], which we used

to recover the image from its non-uniform Fourier samples with good performance in

practical applications. We have also introduced a computationally efficient algorithm

termed as GIRAF, which works on the original signal samples rather than the struc-

tured high-dimensional matrix [89]; the computational complexity of this algorithm is

comparable to discrete total variation regularization, which makes this scheme readily

applicable to large-scale imaging problems, such as undersampled dynamic magnetic

resonance image reconstruction [5].

The main focus of the present chapter is to introduce theoretical guarantees on the

recovery of continuous domain piecewise constant images from non-uniform Fourier

samples via a convex structured low-rank matrix completion algorithm. Our main

result shows the number of non-uniform samples sufficient to recover the image is

proportional to the complexity of the edge set, as measured by the bandwidth of the

edge set function and an incoherence measure related to the edge set geometry. We

additionally show that the recovery is robust to noise and model-mismatch.
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The proof of the main result builds off of [23], which proved similar recovery

guarantees for the recovery of multi-dimensional isolated Diracs from non-uniform

Fourier samples by minimizing the nuclear norm of an “enhanced” multi-level Hankel

matrix. This work showed that the number of samples necessary for recovery depends

the number of Diracs and on an incoherence measure of the signal, that can be defined

solely in terms of the relative locations of the Diracs.

However, the theory in [23] relies heavily on an explicit factorization of the en-

hanced matrix (e.g., Vandermonde factorization of a Hankel matrix in the 1-D case),

which is only available when signularities in the signal are isolated and finite in num-

ber. Since the singularities in the proposed class of piecewise constant images (i.e.,

the image edges) are not isolated nor finite, the recovery guarantees in [23] cannot

be directly extended to our setting. Instead, to achieve our result, we give a new

characterization of the row and column spaces of the structured matrix arising in our

setting. We show this new characterization allows us to derive an incoherence mea-

sure based solely on geometric properties of the edge set. In particular, we derive an

upper bound for the incoherence measure that is related to the size of edge set curve.

Consistent with intuition, our results show that high sampling burden is associated

with the estimation of images with smaller piecewise constant regions.

We note that the signal models in [6, 16, 23] do not include the class of piecewise

constant images considered in this work. In particular, all of the above models as-

sume the discontinuities to be finite in number and well separated, which does not

hold in our setting. Recently, [122] adapted the results in [23] to introduce recov-

ery guarantees for Fourier interpolation of a variety of finite-rate-of-innovation signal

models [118], including piecewise constant functions. However, these results are lim-

ited to the 1-D setting and share the assumption that the singularities of the signal

are finite and isolated. Furthermore, the structured matrix lifting considered in this

work is different than those considered in [23] and [122]. Specifically, the structured
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matrix lifting in this work consists of two vertically concatenated multi-level Toeplitz

matrices (i.e., block Toeplitz with Toeplitz blocks), whose entries are built from the

weighted Fourier coefficients of the images. This is substantially different from the

structured matrix liftings considered in [23] (unweighted, one block, single block mul-

tilevel Hankel) and [122] (weighted, one block, single-level Hankel). Finally, we note

that a preliminary version of the results presented in this work have been published

previously in the conference paper [88] without proofs. The present work includes

considerably more details and major improvements to the main results.

3.1.1 Notation

Bold lower-case letters x are used to indicate vector quantities, bold upper-case

X to denote matrices, and calligraphic script X for general linear operators. We

typically reserve lower-case greek letters µ, γ, etc. for trigonometric polynomials (3.3)

and upper-case greek letters Λ,Ω, etc. for their coefficient index sets, i.e. finite subsets

of the integer lattice Z2, with cardinality denoted by |Λ|. We write Λ + Ω for the

dilation of the index set Ω by Λ, i.e. the Minkowski sum {k + ` : k ∈ Λ, ` ∈ Ω}, and

write 2Λ to mean Λ + Λ, 3Λ = 2Λ + Λ, etc. We also denote the contraction of Ω by

Λ by Ω : Λ = {` ∈ Ω : `− k ∈ Ω for all k ∈ Λ}.

3.1.2 My contribution

This work was done in collaboration with Dr. Greg Ongie. At this point, I would

like to enlist the sections in this chapter that highlight my contribution, namely,

sections 3.3.2, 3.3.3, 3.5.2, 3.9, 3.10, 3.12 and 3.13. Specifically, my contribution

was towards formulating the proof of the main theorem and the theorem bounding

the recovery error in presence of bounded noise. The row and column subspace

characterization, to define the incoherence of the lifted matrix with the sampling

basis, was solely Dr. Ongie’s formulation.
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f (x, y)

f̂ [kx, ky]

∂xf

∂yf

µ(x, y)

∇ ·

∗

= 0

= 0
j2π

(
kx
ky

) µ̂[kx, ky]

∂̂yf

∂̂xf

Figure 3.1: Annihilation of a piecewise constant function as a multiplication in spa-
tial domain (top) and as a convolution in Fourier domain (bottom). The partial
derivatives of a piecewise constant function are supported on the edge set. If there
is a bandlimited function µ that is zero along the edge set, then the spatial domain
product of µ with the gradient ∇f = (∂xf, ∂yf) is identically zero. In Fourier domain,
this is equivalent to the annihilation of the arrays j2πkxf [kx, ky] and j2πkyf [kx, ky]
by 2-D convolution with a finite filter determined by the Fourier coefficients µ̂.

3.2 Background

3.2.1 2-D Piecewise Constant Images with Bandlimited Edges

In this work we consider a continuous domain piecewise constant model for images,

f(r) =
N∑
i=1

ai 1Ui(r), for all r = (x, y) ∈ [0, 1]2, (3.1)

where ai ∈ C, 1U denotes the characteristic function of the set U , and each Ui ⊂ [0, 1]2

is a simply connected region with piecewise smooth boundary ∂Ui. We study the

recovery of such an image from a sampling of its Fourier coefficients f̂ specified by

f̂ [k] =

∫
[0,1]2

f(r)e−j2πk·r; k ∈ Ω ⊂ Z2. (3.2)
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Following [92], we further assume that the edge set of the piecewise constant image,

specified by E := ∪i∂Ui, coincides with the zero set of a 2-D bandlimited function:

E = {r ∈ [0, 1]2 : µ(r) = 0}, with µ(r) =
∑
k∈Λ

c[k] ej2πk·r, (3.3)

where the coefficients c[k] ∈ C, and Λ is a finite subset of Z2. We call any function µ

in the form (3.3) a trigonometric polynomial, and we say µ is bandlimited to Λ, i.e.,

the Fourier coefficients µ̂ are supported within Λ. For short, we will write {µ = 0}

for the zero set of µ considered as a subset of [0, 1]2.

Define the degree of a trigonometric polynomial µ, denoted by deg(µ) = (K,L)

to be the linear dimensions of the smallest rectangle containing the support set

{k : µ̂[k] 6= 0}. In [92] we proved that for every curve E given by the zero set

of a trigonometric polynomial, there exists a unique minimal degree trigonometric

polynomial1 µ0 such that E = {µ0 = 0} and if µ is any other trigonometric poly-

nomial with {µ0 = 0} ⊂ {µ = 0}, then deg(µ0) ≤ deg(µ) entrywise. By extension,

we define the degree of a curve E to be equal to the degree of of its minimial de-

gree polynomial µ0. We also say the curve E is bandlimited to Λ0 ⊂ Z2, where Λ0

is the minimal rectangular index set containing the support of µ̂. Intuitively, the

degree/bandwidth of a curve gives a quantitative measure of its complexity. For ex-

ample, in [92] we show the number of connected components of a curve is bounded

in terms of its degree.

3.2.2 Recovery from uniform Fourier samples

We have shown in [92] that when µ is any trigonometric polynomial that vanishes

on the edge set of the piecewise constant image f , the gradient ∇f = (∂xf, ∂yf)

satisfies the property

µ∇f = 0, (3.4)

1More precisely, µ0 is unique up to multiplication by a phase factor ej2πk·r for some k ∈ Z2.
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where equality in (3.4) is understood in the sense of distributions (see, e.g., [110]).

The spatial domain annihilation relation (3.4) translates directly to the following

convolution annihilation relation in Fourier domain:

∑
k∈Λ

∇̂f [`− k] µ̂[k] = 0, ∀ ` ∈ Z2. (3.5)

Here ∇̂f [k] = j2π(kxf̂ [k], kyf̂ [k]) for k = (kx, ky). Note the equations in (3.5) are

linear with respect to the coefficients µ̂.

Suppose we have access to samples of the Fourier coefficients f̂ on a finite rectan-

gular grid Γ ⊂ Z2, and suppose µ is bandlimited to Λ1 ⊂ Γ. Then we can build the

system of equations in (3.5) for all ` belonging to the index set Λ2 ⊂ Γ, where Λ2 is

the set of all integer shifts of Λ1 contained in Γ. In this case (3.5) can be compactly

represented in matrix form as

T (f̂ )h =

Tx(f̂ )

Ty(f̂ )

h = 0, (3.6)

where Tx(f̂ ), Ty(f̂ ) ∈ C|Λ2|×|Λ1| are matrices corresponding to the discrete 2-D convo-

lution with the arrays kxf̂ [kx, ky] and kxf̂ [kx, ky] for (kx, ky) ∈ Γ, respectively (after

omitting the inconsequential factor j2π). Here we use h to denote the vectorized

version of the filter (µ̂[k] : k ∈ Λ1), where the index set Λ1 is called the filter support.

The matrices Tx(f̂ ) and Ty(f̂ ) are block Toeplitz with Toeplitz blocks. See Figure

3.2 for an illustration of the construction of T (f̂ ).

Equation (3.6) shows that T (f̂ ) is rank deficient, since it has the non-trivial vector

h in its nullspace. In addition, when the filter support Λ1 defining T (f̂ ) is sufficiently

big, we can also show T (f̂ ) is low-rank. This is because if µ0 is the minimal degree

polynomial for the edge set, then any multiple of µ = γ · µ0 bandlimited to Λ1 will
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f̂ [kx, ky]

kxf̂ [kx, ky]

kyf̂ [kx, ky]

= T (f̂ )

Λ1

Γ ⊂ Z2

f (x, y)

Tx(f̂ )

Ty(f̂ )

Figure 3.2: Construction of the structured matrix lifting T (f̂ ) considered in this
work. From a rectangular array of the Fourier coefficients f̂ [kx, ky] of a continuous

domain image f(x, y), the weighted arrays kxf̂ [kx, ky] and kyf̂ [kx, ky] are constructed.

The matrices Tx(f̂ ) and Ty(f̂ ) are then obtained by extracting all vectorized patches

from the weighted arrays, and loading these into the rows of Tx(f̂ ) and Ty(f̂ ). The

resulting matrices Tx(f̂ ) and Ty(f̂ ) have a block Toeplitz with Toeplitz blocks struc-

ture. Finally, T (f̂ ) is formed by vertically concatenating the blocks Tx(f̂ ) and Ty(f̂ ).

satisfy the annihilation equation (3.4). In Fourier domain, this means the vector

h = ((µ̂0 ∗ γ̂)[k] : k ∈ Λ1) (3.7)

is in the nullspace of T (f̂ ). Hence if the filter support Λ1 is larger than support Λ0 of

µ0, T (f̂ ) has a large nullspace and is low-rank. The following result from [92] gives

an exact characterization of the rank of T (f̂ ), which will be important for this work:

Theorem 1. [92] Suppose f is a piecewise constant image (3.1) whose edge set

E = {µ0 = 0} is the zero set of a trigonometric polynomial µ0 bandlimited to Λ0. Let

T (f̂ ) be built with filter size Λ1 ⊇ Λ0, then

rank T (f̂ ) ≤ |Λ1| − |Λ1 : Λ0| (3.8)

where |Λ1| is the number of indices in Λ1 and |Λ1 : Λ0| is the number of integer shifts

of Λ0 contained in Λ1. Moreover, equality holds in (3.8) if Γ ⊇ 2Λ1 + Λ0 and if the

edge set does not contain any singular points. In this case, the nullspace of T (f̂ )
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consists of all vectors in the form (3.7).

Note that R := |Λ1| − |Λ1 : Λ0| is a measure of the bandwidth of µ0 and hence is

indicative of the complexity of the edge set curve E = {µ0 = 0}. In the remainder

of this work we assume the conditions in Theorem 1 that guarantee the equality

rank T (f̂ ) = R holds, in particular Γ ⊇ 2Λ1 + Λ0.

If we take Λ1 = Λ0, the above result shows Fourier samples of f̂ in Γ ⊇ 3Λ0 is

sufficient for the recovery of the minimal degree polynomial µ0, since in this case µ̂0

can be identified as the unique non-trivial nullspace vector of T (f̂ ). The following

theorem states that once µ0 is available, f is the unique solution to the annihilation

equations (3.4) and (3.5):

Theorem 2. [92]. Suppose f is a piecewise constant image (3.1) whose edge set

E = {µ0 = 0} is the zero set of a trigonometric polynomial µ0 bandlimited to Λ0.

Suppose the Fourier sampling set Γ ⊇ Λ0. If g ∈ L1([0, 1]2) satisfies

µ0∇g = 0 subject to ĝ[k] = f̂ [k] for all k ∈ Γ, (3.9)

then g = f almost everywhere.

In principle, this result allows us to solve for the amplitudes of regions of the

piecewise constant function f by plugging in the known µ0 into the equation (3.9)

and solving a linear system, similar to Prony’s method. However, for complicated

piecewise constant images with many regions, it may be more practical to use the

approximations introduced in [92].

3.3 Recovery from non-uniform Fourier samples

The theory presented in Section 3.1 shows that the exact recovery of a continuous

domain piecewise constant image with a bandlimited edge set is possible when we

collect Fourier samples of the image on a sufficiently large uniform grid in Fourier
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domain. However, the recovery procedure breaks down when we have non-uniform

or missing samples, which is often the case in practical settings, e.g., compressed

sensing MRI [82]. Also, even in the case of uniform sampling, if some samples are

corrupted by significant noise these samples can be thought of as effectively missing

(e.g., impulse noise corrupting samples corresponding to high spatial frequencies hav-

ing small magnitude). Therefore, we propose and analyze a method to interpolate the

non-uniform/missing samples to a uniform grid in Fourier domain, which guarantees

full recovery of the image in spatial domain.

Recall that Theorem 1 says that the structured matrix T (f̂ ) built from the Fourier

coefficients f̂ [k],k ∈ Γ, where Γ ⊂ Z2 is a uniform rectangular grid, is known to be

low-rank precisely when f is a piecewise constant image with a bandlimited edge set.

Hence we propose to recover f̂ [k],k ∈ Γ from its samples at non-uniform locations

Ω ⊂ Γ as the solution to the convex matrix completion problem:

min
ĝ[k],k∈Γ

‖T (ĝ)‖∗ subject to ĝ[k] = f̂ [k] for all k ∈ Ω (3.10)

where ‖ · ‖∗ denotes the nuclear norm, i.e., the sum of the singular values of a matrix,

which is the convex relation of the rank functional. Here Ω is a multi-set containing

|Ω| elements chosen uniformly at random from Γ, generated by sampling with replace-

ment2. Note that (3.10) is different than the standard low-rank matrix completion

setting studied in [15,46] in that the low-rank matrix T (f̂ ) is structured and param-

eterized by the coefficient vector f̂ . Similar structured low-rank matrix completion

schemes have been proposed for the recovery of signals from non-uniform Fourier sam-

ples [23, 122] and used with empirical success in MRI applications [51, 90, 106]. The

main focus of this chapter is to determine the sufficient number of random samples

that will ensure exact recovery of the Fourier coefficients of f on the reconstruction

2We consider sampling with replacement model for ease of analysis, similar to the approaches
in [23,46].



www.manaraa.com

56

grid Γ with high probability.

3.3.1 Role of incoherence

Several authors have shown that the sufficient number of samples for low-rank

matrix recovery by nuclear norm minimization to succeed is dependent on the in-

coherence of the sampling basis with respect to the matrix to be recovered [23, 46].

Similarly, our results depend on an incoherence measure derived from the structure

of the matrix T (f̂ ) and properties of the piecewise constant image f . In particular,

define PU and PV to be the orthogonal projections onto the column space and row

space of T (f̂ ), respectively, i.e., if T (f̂ ) = UΣV ∗ is the rank-R singular value de-

composition then PUX = UU ∗X, PVX = XV V ∗. For each k = (k1, k2) ∈ Γ we

define the sampling matrices

Ak =

A1,k

A2,k

 ∈ C2|Λ2|×|Λ1| (3.11)

with

(Ai,k)α :=


ki

‖k‖
√
|ωi(k)|

if α = (α1, α2) ∈ ω(k)

0 else.

(3.12)

where we use ω(k) to denote the set of locations (α1, α2) in the matrix Tx(f̂ ) or Ty(f̂ )

that contain the entry kxf̂ [k] and kyf̂ [k], respectively (this set is the same in either

case). The matrices {Ak}k∈Γ form an orthonormal basis for the space of matrices

defined by the range of the matrix lifting T . For any set of coefficients {ĝ[k]}k∈Γ we

can expand the matrix T (ĝ) as

T (ĝ) =
∑
k∈Γ

ĝ[k] ‖k‖
√
|ωi(k)|Ak. (3.13)
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Similar to results in [23, 46, 122], we prove that nuclear norm minimization (3.10)

recovers the exact low-rank solution with high probability provided we can uniformly

bound the norms of the projections of the sampling basis {Ak}k∈Γ onto the row and

column spaces of T (f̂ ):

Proposition 3. Consider T (f̂ ) of rank R corresponding to a piecewise constant

function f whose edge set coincides with the zero set of µ0, let ρ be the incoherence

measure associated with µ0 to be defined in the sequel (see Definition 9), and set

cs = |Γ|/|Λ1|. Then we have

max
k∈Γ

‖PUAk‖2
F ≤

ρR cs
|Γ|

, (3.14)

max
k∈Γ
‖PV Ak‖2

F ≤
ρR cs
|Γ|

. (3.15)

The proof of this result is given in Appendix A and relies on the characterization

of the row and column spaces of T (f̂ ) given in Lemma 6 and 8 of the next section.

These results will be used in the proof of the main theorem given in Appendix B.

3.3.2 Main results

We now present our main results, which determine the sufficient number of random

Fourier samples for the convex structured low-rank matrix completion program (3.10)

to succeed with high probability. Our first theorem addresses the case of recovery

from noiseless Fourier samples:

Theorem 4. Let f be a continuous domain piecewise constant image (3.1), whose

edge-set is described by the zero-set of the trigonometric polynomial µ0 bandlimited to

Λ0 (see (3.3)). Let Ω ⊂ Γ be multi-set of indices drawn uniformly at random within Γ

with replacement. Then there exists a universal constant c > 0 such that the solution
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to (3.10) is f̂ with probability exceeding 1− |Γ|−2, provided

|Ω| > c ρ cs R log4 |Γ|, (3.16)

where R = |Λ1| − |Λ1 : Λ0| = rank T (f̂ ), cs = |Γ|/|Λ1|, c is a universal constant,

and ρ ≥ 1 is an incoherence measure depending on the geometry of the edge-set, to

be defined in the sequel (see Definition 9).

To better understand the dependence of the bound in (3.16) on the filter size Λ1

and the edge set bandwidth Λ0, assume for simplicity that Λ1 is some dilation of Λ0,

that is, Λ1 = αΛ0, where α > 1 is an integer. In this case, the factor csR in (3.16)

simplifies to

(
|Λ1| − |Λ1 : Λ0|

|Λ1|

)
|Γ| ≤

(
α2 − (α− 1)2

α2

)
|Γ| ≤ 2|Γ|

α
. (3.17)

Therefore, assuming the other constants in (3.16) are fixed, the number of measure-

ments sufficient for exact recovery is proportional to the reciprocal of the dilation

factor α. This suggests taking the filter size Λ1 to be as large as allowed by Theorem

4. Namely, Λ1 should satisfy 2Λ1 + Λ0 = Γ, i.e., the side-lengths of filter support Λ1

should be roughly half those of the reconstruction grid Γ. Fixing the filter support

Λ1 to obey this bound, then Γ = (2α + 1)Λ0, and so |Γ| ≤ (2α + 1)2|Λ0|. Inserting

this bound into (3.17) gives

csR = O (α|Λ0|) . (3.18)

Combined with (3.16), this shows that the number of measurements sufficient for

exact recovery is on the order of |Λ0|, up to incoherence and log factors.

The proof of Theorem 4, detailed in Appendix B, is in line with the approach of

[23]. In particular, we prove the result by constructing an approximate dual certificate

using the well-known “golfing scheme” of [46]. The main differences between the
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proof of the above result and the proof of the analgous result in [23] arises from the

differences in the matrix structure and hence the characterization of the incoherency

between the row and column subspaces of T (f̂ ) with the sampling basis. In particular,

the matrix T (f̂ ) we consider is obtained by stacking two block Toeplitz with Toeplitz

blocks (BTTB) matrices whose entries are the weighted Fourier coefficients of f , as

opposed to a single unweighted BTTB matrix in [23]. The approach in [23] relies on

an explicit low-rank factorization of a BTTB matrix in terms of Vandermonde-like

matrices3. Since this factorization is not available in our setting, we use algebraic

properties of trigonometric polynomials to give a new characterization of the row

and column spaces of the matrix. In particular, we show in Section 3.4 that similar

Vandermonde-like basis matrices exist for the row and column space of the lifted

matrix, and use these to derive a related incoherence measure that satisfies the bounds

in Prop. 3.

3.3.3 Recovery in the presence of noise and model-mismatch

We now generalize (3.69) to the setting where we have noisy or corrupted Fourier

samples

f̂n[k] = f̂ [k] + η[k],k ∈ Ω, (3.19)

where η[k] ∈ C is a vector of noise. In this case, we pose recovery as

min
ĝ
‖T (ĝ )‖∗ subject to ‖PΩ(f̂n − ĝ)‖ ≤ δ. (3.20)

where δ > 0 is an estimate of the `2-norm of the error ‖η‖, and PΩ denotes projection

onto Ω. We make no assumptions on the statistics of the noise η. In particular, η

can represent errors due to model-mismatch, such as when the image is not perfectly

3The structured matrices considered in [23] are block Hankel with Hankel block matrices (BHHB),
but this difference is purely cosmetic: every BTTB matrix can be re-expressed as BHHB after a
permutation of its rows and columns. In particular, the Vandermonde-like factorization of BHHB
matrices in [23] carries over to BTTB matrices.
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piecewise constant, or when the edge set of the image does not coincide perfectly with

the zero level-set of a bandlimited function.

The following theorem shows that when the deviation of f̂n from f̂ is small, the

modified recovery program (3.20) recovers a solution that is close in norm to f̂ under

the same sampling conditions as Theorem 4.

Theorem 5. Let f be specified by (3.1), whose edge-set is described by the zero-

set of the trigonometric polynomial µ0 bandlimited to Λ0 with associated incoherence

measure ρ. Let Ω ⊂ Γ be a multi-set of indicies drawn uniformly at random within

Γ with replacement such that |Ω| satisfies the bound (3.16) in Theorem 4. If the

measurements f̂n satisfy ‖PΩ(f̂n − f̂)‖2 ≤ δ, then the solution ĝ to (3.20) satisfies

‖T (f̂ )− T (ĝ )‖F ≤ c|Γ|2δ. (3.21)

with probability exceeding 1− |Γ|−2, where c is a universal constant.

See Section 3.13 for proof. The bound (3.21) allows us to quantify the effect

of model-mismatch on recovery. In particular, suppose the image fn represents a

perturbation from an ideal piecewise constant image f such that their difference in

L2-norm is δ-small:

‖fn − f‖L2 =

(∫
[0,1]2
|fn(r)− f(r)|2 dr

) 1
2

≤ δ. (3.22)

Then by Parseval’s theorem, the measurements of f̂n satisfy ‖PΩ(f̂n − f̂)‖2 ≤ δ,

hence Theorem 5 applies. From (3.21) we obtain the bound ‖T (f̂ ) − T (ĝ )‖F ≤

c|Γ|2‖fn−f‖L2 . This shows that if the image fn is close to the ideal piecewise constant

image f in spatial domain L2-norm, then the matrix T (ĝ ) we recover using (3.20)

will be close in norm to T (f̂ ) with high probability.
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3.4 Row and column spaces of T (f̂ ) and incoherence

In this section we define an incoherence measure ρ that satisfies the desired bounds

in Prop. 3. We show that the incoherence measure depends only on the geometry of

the edge set of the image. The incoherence measure is derived from a new characteri-

zation of the row and column spaces of the matrix T (f̂ ) in terms of Vandermonde-like

basis matrices.

3.4.1 Row and column spaces of T (f̂ )

Our first lemma gives a basis for the row space of T (f̂ ):

Lemma 6. A basis of the row space of T (f̂ ) is given by the columns of the |Λ1| ×R

Vandermonde-like matrix

Erow(P ) := 1√
|Λ1|


ej2πk1·r1 . . . ej2πk1·rR

...
...

ej2πk|Λ1|·r1 . . . ej2πk|Λ1|·rR

 (3.23)

where {k1, ...,k|Λ1|} is a linear indexing of elements in Λ1, and P = {r1, ..., rR} is a

set of R = |Λ1| − |Λ1 : Λ0| distinct points on the edge set curve {µ0 = 0} chosen such

that the columns of Erow are linearly independent.

The careful reader will have noticed that Lemma 6 takes for granted the existence

of a set of points P = {r1, ...., rR} ⊂ {µ0 = 0} such that the columns of Erow(P )

is linearly independent. Call such a set P a set of admissible nodes for the curve

{µ0 = 0}. The following result shows that sets of admissible nodes always exist and

are easy to construct:

Lemma 7. Let µ0 be bandlimited to Λ0. Any set of M ≥ R+ |Λ0| distinct points on

the curve {µ0 = 0} contains a subset of R points that are a set of admissible nodes.

The next lemma shows that we can characterize the column space of T (f̂ ) in a

similar way as the row space:
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Lemma 8. A basis of the column space of T (f̂ ) is given by the columns of the

2|Λ2| ×R weighted Vandermonde-like matrix:

Ecol(P ) = 1√
|Λ2|



w1,x

‖w1‖ e
j2πk1·r1 . . .

wR,x
‖wR‖

ej2πk1·rR

...
...

w1,x

‖w1‖ e
j2πk|Λ2|·r1 . . .

wR,x
‖wR‖

ej2πk|Λ2|·rR

w1,y

‖w1‖ e
j2πk1·r1 . . .

wR,y
‖wR‖

ej2πk1·rR

...
...

w1,y

‖w1‖ e
j2πk|Λ2|·r1 . . .

wR,y
‖wR‖

ej2πk|Λ2|·rR


, (3.24)

where where {k1, ...,k|Λ2|} is a linear indexing of elements in Λ2 and P = {r1, ...., rR}

is a set of admissible nodes for the curve {µ0 = 0}. The weight vectors wi =

(wi,x, wi,y), are described by the formula (3.57) in Appendix A, and depend only on

the edge set {µ0 = 0}, the nodes P , and the filter support Λ1.

See Section 3.8.3 for the proofs of Lemmas 6 and 7, and Section 3.8.5 for the proof

of Lemma 8.

3.4.2 Incoherence measure

We now show how to define an incoherence measure ρ that satisfies the desired

bounds in Prop. 3. Consider the Gram matrix G(P ) = [Erow(P )]∗Erow(P ), where P

is any set of R points r1, ..., rR on the edge set curve {µ = 0}. It is easy to see from

(3.23) that the entries of G(P ) are specified by

(G(P ))i,j =
1

|Λ1|
DΛ1(ri − rj), 1 ≤ i, j ≤ R, (3.25)

where DΛ1(r) :=
∑
k∈Λ1

ej2πk·r is the Dirichlet kernel supported on Λ1. Note that

G(P ) has ones along the diagonal, and the magnitude of the off-diagonal entries is

dictated by the distances |ri − rj| and the filter support Λ1. We now define the
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incoherence measure ρ associated with the edge set E = {µ0 = 0} in terms of G(P ).

Definition 9. Suppose the edge set curve E = {µ0 = 0} has bandwidth Λ0 (see

(3.3)), and set R = |Λ1| − |Λ1 : Λ0|. Define the incoherence measure ρ by

ρ = min
P⊂{µ0=0}
|P |=R

1

λmin[G(P )]
, (3.26)

where λmin[G(P )] is the minimum eigenvalue of G(P ), and we use the convention

1
0

= +∞.

Put in words, among all possible arrangements of R points along the edge-set

{µ0 = 0}, we seek the arrangement such that the minimum eigenvalue G(P ) is as

large as possible. Intuitively, the optimal arrangement will maximize the minimum

separation distance among the R points, and ρ can be thought of as a measure of

this geometric property. In particular, edge set curves that enclose a small area, and

hence require the points P to be closely spaced along the curve, will result in a large

value of ρ. According to Theorem 4, the measurement burden will be high for such

curves.

Note that curves corresponding to a particular bandwidth can come in different

sizes. Specifically, for a fixed µ0 with bandwidth Λ0 consider the family of curves

{µ0 = α}, where α is a scalar. One can change α to obtain multiple curves with

exactly the same bandwidth, each of which correspond to a different levelset of µ0.

These level-sets will have different incoherence measures, depending on how large or

small the level-set curves are. This shows the incoherence of an edge set captures

something besides its bandwidth. See Figure 3.3 for an illustration.

We can give incoherency measure of an edge set a more precise geometric inter-

pretation based on the minimum separation distance of a set of admissible nodes. We

generalize a bound on the condition number of Vandermonde matrices derived in [85]

to the case of the Vandermonde-like matrix (3.23), and use this to derive a bound for
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the incoherence parameter ρ.

Theorem 10. Assume that the points P = {(xi, yi)}Ri=1 belonging to the curve {µ0 =

0} satisfy |xi − xj| > ∆ and |yi − yj| > ∆ for all i 6= j. Assume the filter support

Λ1 ⊂ Z2 is a square region symmetric around the origin of size
√
|Λ1|×

√
|Λ1|. Then

ρ ≤
(

1− 1√
|Λ1| ∆

)−2

, (3.27)

where ρ is the incoherence parameter (3.26) associated with the curve {µ0 = 0}.

See Section 3.10 for the proof. The bound in (3.27) shows that the incoherence is

close to one (i.e., is as small as possible) when ∆� 1/
√
|Λ1|. Since ∆ is the spacing

between each pair of points on the curve, to achieve a larger ∆ spacing, and hence a

smaller ρ, requires a larger curve. This suggests that fewer measurements are required

to recover a larger curve, which is consistent with the findings in the isolated Dirac

setting [85,122].
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Figure 3.3: Illustration of edge set incoherence measure ρ. In (a) are the level-sets of
trigonometric polynomial µ0 bandlimited to Λ0 of size 3×3. These curves all have the same
bandwidth, Λ0, but come in different sizes. In (b)-(d) we show R = 24 nodes on the curve
giving the indicated bound on incoherence parameter ρ defined in (3.26), assuming a filter
Λ1 of size 7× 7. Observe that the incoherence measure increases as the curve gets smaller.
This indicates the smaller curves have a significant sampling burden.
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3.5 Numerical Experiments

3.5.1 Algorithms

For small to moderate problem sizes the nuclear norm minimization problem

(3.10) can be solved efficiently with the alternating directions method of multipliers

(ADMM) algorithm, which results in a modification of the singular value threshold-

ing (SVT) algorithm [13]. This approach has been proposed for related structured

low-rank matrix completion problems in several works, e.g., [23,36,90,122]. We adopt

this approach here as well for our small-scale numerical experiments. A detailed im-

plementation of this algorithm can be found in, e.g., [122]. However, we note that for

large scale problems, such as those encountered in realistic imaging applications, more

efficient approaches need to be adopted, because often in these cases the lifted matrix

is too large to be held in memory. A fast algorithm for solving an approximation to

(3.10) for large-scale problems is given in [89].

3.5.2 Phase transitions

In Fig. 3.4, we study the probability of exact recovery under different assumptions

on the filter size and edge set of the image. For these experiments the reconstruction

grid Γ was of size 65×65. We generated synthetic random piecewise constant functions

with known edge set bandwidth (see Fig. 3.3(c)), and attempted to recover their

Fourier coefficients in Γ from random samples in Ω at the specified undersampling

factor. For each set of parameters we ran 10 random trials. We count the recovery

as “exact” if the recovered coefficients f̂ satisfied ‖f̂ − f̂0‖/‖f̂0‖ < 10−3, where f̂0 is

the ground truth. The exact recovery rate was then obtained by averaging over the

10 trials.

First, in Figure 3.4 (a), we studied the effect of changing the filter size Λ1 on the

recovery while keeping other parameters constant. We fixed the edge-set bandwidth

to |Λ0| = 9×9 and varied the filter size as |Λ1| = (2K+1)×(2K+1) for K = 1, ..., 30.
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We call K the filter bandwidth. Note that Theorem 4 has restrictions on how large

Λ1 can be. The maximum filter bandwidth for which Theorem 4 holds in this case

was K = 15 (red line in Figure 3.4(a)), however we extended the filter size to observe

the behavior of the algorithm outside of this regime. As predicted by Theorem 4, we

find that the optimal performance is obtained when Λ1 is the largest as allowed by

Theorem 4 (roughly half the size of Γ in each dimension).

Next, in Figure 3.4(b), we study the recovery as a function of the bandwidth of

the edge-set of the image. The filter bandwidth was fixed at K = 15, and we varied

the edge-set bandwidth as |Λ0| = (2K0 + 1)× (2K0 + 1). The phase transition shows

dependence |Ω| = O(|Λ0|) as predicted by Theorem 4.

Finally, in Figure 3.5 we also investigate the performance of the noisy structured

low-rank matrix completion formulation (3.20) for the recovery of undersampled syn-

thetic data with added noise. We use the same setup as above and generate Fourier

samples of random piecewise constant images, fixing the filter bandwidth to K = 15,

the edge set bandwidth |Λ0| = 7 × 7, and the undersampling factor to 0.75. We

add iid complex white Gaussian noise with standard deviation ranging from 0 − 5

to the sampled Fourier coefficients and run 50 random trials at each noise level. We

report the normalized root mean-square error (NRMSE) as measured in the lifted

matrix domain NMRSE=‖T (f̂ ) − T (f̂ ∗)‖F/‖T (f̂ ∗)‖F and in the original domain

NMRSE=‖f̂ − f̂ ∗‖2/‖f̂ ∗‖2, where f̂ ∗ are the ground truth Fourier coefficients and

f̂ is the recovery (we measure the error in lifted domain to compare with Theorem

5). In Figure 3.5 we use a box plot to display the NRMSE of the random trials at

each noise level. We observe the NRMSE in the lifted matrix domain shows a linear

dependence on the noise level as predicted by Theorem 5. The NRMSE in the origi-

nal domain follows a similar trend, demonstrating robust recovery of the true Fourier

coefficients.
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(a) Varying filter bandwidth (b) Varying edge set bandwidth

K0 = 1 K0 = 5 K0 = 9 K0 = 13

(c) Examples of randomly generated piecewise constant images

Figure 3.4: Phase transition experiments. We generated random piecewise constant
images with known edge-set bandwidth and study the success rate proposed struc-
tured low-rank matrix completion scheme under two conditions: in (a) we vary the
filter size Λ1 while keeping the edge-set bandwidth K0 fixed, in (b) we vary the
edge-set bandwidth K while keeping the filter size fixed. Examples of the randomly
generated data are shown in (c).

3.5.3 Comparison with TV minimization on real MRI data

We also compare the proposed Fourier domain interpolation scheme against stan-

dard discrete TV minimization in spatial domain:

min
u∈CN

TV (u) subject to PΩ(Fu) = PΩ(Fu0). (3.28)

Here u ∈ CN with N = NxNy is a 2-D array representing a discrete Nx ×Ny image,

u0 ∈ CN is the image to be recovered, F ∈ CN×N denotes the unitary 2-D discrete

Fourier transform (DFT) matrix acting on N1×N2 arrays, PΩ is projection onto the

index of sampling locations Ω ⊂ [Nx]× [Ny], and TV (·) denotes the (isotropic) total
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Figure 3.5: Box plots of recovery error using noisy structured low-rank com-
pletion (3.20) on undersampled synthetic data with added noise. We plot the
normalized root mean-square error (NRMSE) as measured in the lifted matrix
domain NMRSE=‖T (f̂ ) − T (f̂ ∗)‖F/‖T (f̂ ∗)‖F (top) and in the original domain
NMRSE=‖f̂ − f̂ ∗‖2/‖f̂ ∗‖2 (bottom), where f̂ ∗ are the ground truth Fourier coef-
ficients and f̂ is the recovery.

variation semi-norm:

TV (u) =
N∑
i=1

(|(∂1u)i|2 + |(∂2u)i|2)
1
2 (3.29)

where ∂1 and ∂2 are finite difference operators in the horizontal and vertical directions,

respectively. The problem (3.28) has been studied extensively [17,18,66,86,87,101] as

a model for undersampled MRI reconstruction and other inverse problems in imaging.

In Fig. 3.6 we perform an experiment comparing against TV minimization and

the proposed approach on real MRI data. For this experiment we used a fully-

sampled four-coil single-slice acquisition consisting of 256 × 170 Cartesian k-space

samples, which was compressed to a single virtual coil using an SVD-based technique

[124]. Finally, we retrospectively undersampled the pre-processed virtual single coil

data, taking 50% uniform random samples. We find that the proposed structured

low-rank recovery shows significant improvement recovery error over standard total
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variation as measured by SNR = 20 log10(‖f̂‖/‖f̂ ∗ − f̂‖), where f̂ ∗ is the recovered

data and f̂ is the ground truth. The error images indicate the proposed method

more faithfully recovers the true edges of the image. We also compare against a

modification of TV where the image derviatives are computed from a continuous

domiain sinc interpolated version of the image, which we label “TV-sinc”. This

was implemented by modifying the finite difference operators in (3.28) to be Fourier

domain filters with frequency response j2πkx and j2πky. With this method we get a

slight improvement in SNR (+0.3dB), but obtain visually similar quality as standard

TV.

Fully sampled IFFT TV TV-sinc Proposed

0

1

0

0.15

Sampling mask SNR: 1.6 dB SNR: 11.6 dB SNR: 11.9 dB SNR: 15.2 dB

Figure 3.6: Recovery of MRI data from two-fold random uniform undersampling.
Error images are shown in the bottom row.

3.6 Discussion

Discrete domain total-variation minimization has played a central role in com-

pressed sensing from its inception [17,18], which models the image to be recovered as

(approximately) piecewise constant. Since the present work can be thought of as an

extension of compressed sensing type guarantees to the continuous domain setting,

it is fruitful to explore the connections between our continuous domain model and
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discrete domain total variation.

At first glance, the structured low-rank matrix completion problem (3.10) may

seem far removed from the TV-minimization problem (3.28). But, in fact, one can

show TV-minimization (3.28) is equivalent to nuclear norm minimization of a related

structured matrix lifting in Fourier domain. Specifically, (3.28) is equivalent to

min
v
‖C(Fu)‖∗ subject to PΩ(Fu) = PΩ(Fu0). (3.30)

Here

C(Fu) =

Cx(Fu)

Cy(Fu)

 ∈ C2N×N (3.31)

and Cx(Fu), Cy(Fu) are block circulant with circulant blocks (BCCB) matrices whose

first column is specified by the arrays vx = F∂xu and vy = F∂xu. Assuming

circular boundary conditions, we can write (vx)[kx, ky] = (1 − ej2πkx/Nx)(Fu)[kx, ky]

and (vy)[kx, ky] = (1 − ej2πky/Ny)(Fu)[kx, ky]. To see the equivalence of (3.30) with

(3.28), observe that that the BCCB matrices Cx(Fu) and Cy(Fu) diagonalize under

the 2-D unitary DFT matrix F as Cx(Fu) = FDxF
∗ and Cy(Fu) = FDyF

∗, where

Dx = diag(∂xu) and Dy = diag(∂yu). Hence

C(Fu) =

FDxF
∗

FDyF
∗

 =

F 0

0 F

DF ∗ where D =

Dx

Dy

 . (3.32)

Since the nuclear norm is unitarily invariant we have

‖C(Fu)‖∗ = ‖D‖∗

= tr[(D∗D)
1
2 ] =

N∑
i=1

((∂xu)2
i + (∂yu)2

i )
1
2 = TV (u).
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TV-minimization Proposed
Spatial domain discrete continuous

Derivative operator finite differences exact derivative
Singularity set discrete points connected curves

Frequency domain discrete discrete
Frequency weighting wi[k] 1− ej2πki/Ni j2πki

Lifted matrix structure BCCB BTTB
Rank of lifted matrix sparsity of bandwidth of

discrete gradient edge set

Table 3.1: Comparison of proposed scheme with discrete total variation minimization

We find it interesting to use this re-formulation of TV-minimization to better

understand the proposed approach. In Table 3.1 we summarize the similarities and

differences. One essential difference are the dimensions of the matrix liftings. In

particular, the matrix lifting we propose has dimensions 2|Λ2| × |Λ1|, with |Λ1|λ|Λ2|

whereas the matrix lifting associated with TV in (3.30) has dimensions 2N × N . If

the reconstruction grid size is the same in both cases, i.e., |Γ| = N , then the proposed

matrix lifting has substantially fewer columns than the one associated with TV. This

is due to our assumption that edge set of the image has low bandwidth. In other

words, we restrict the degrees of freedom of the model by constructing a lifting with

fewer columns. We believe this difference may explain the success of the proposed

method over TV-minimization observed empirically in Section 3.5.

3.7 Conclusion

We derived performance guarantees for the recovery of piecewise constant images

from random non-uniform Fourier samples via a convex structured low-rank matrix

completion problem. This was achieved by adapting results in [23] to the case of a low-

rank block two-fold Toeplitz matrix with an additional weighting scheme that arises

naturally when considering piecewise constant images. We also define incoherence

measures that rely only on geometric properties of the edge set, which indicate that
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the sampling burden is higher for images with smaller piecewise constant regions.

The recovery guarantees in this work focused on the case of uniform random sam-

ples. However, we observe that variable density random strategies where the low

spatial frequencies are more heavily sampled also give good recovery in practice. It

would be interesting to adapt our results to a wider variety of sampling distributions,

and to identify the optimal sampling strategy for signals belonging to our image

model. Towards this end, recent work has shown that it is possible to eliminate de-

pendence on coherence factors in the sampling complexity rates for matrix completion

if the entries are sampled according to their leverage scores, which can be thought

of as a local measure of incoherency [21, 22, 32]. Extending this analysis to the case

of the structured matrices considered in this work may give insights on improved

sampling strategies in the case of data having high coherence. However, the direct

extension of leverage sampling theory to the present setting is not straightforward

due to the highly structured nature of the matrices considered in this work, as well

as the relationship between the matrix entries and the signal model. We leave this as

a topic for future research.

In this work, we showed that when the Fourier samples are corrupted with bounded

noise we can bound the Frobenius norm of the errors in the recovered matrices.

However, it may be more informative to have a quantitative bound characterizing

the error of the recovered edge-set compared to the true edge-set of the image, as

described by the zero level-set of a trigonometric polynomial. However, this analysis

is beyond the scope of the present work, and we leave it for future work.

3.8 Appendix A: Incoherence Bounds

3.8.1 Notation and Preliminaries

To simplify our arguments, we will convert the linear operators T (f̂ ) and T (f̂ )∗

that are defined in Fourier domain to linear operators acting on spaces of trigono-

metric polynomials (3.3) in spatial domain. Specifically, for any index set Ω ⊂ Z2
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let BΩ denote the vector space of all trigonometric polynomials that have coefficients

supported within Ω. Similarly, we denote the space of vector fields ρ = (ρ1, ρ2) with

components ρ1, ρ2 ∈ BΩ as B2
Ω. We set S(f) = FT (f̂ )F−1, where F is the Fourier

transform of a periodic function on [0, 1]2. For any index set Ω, we define the Dirichlet

kernel DΩ(r) :=
∑
k∈Λ e

j2πk·r. Fix a filter support Λ1 ⊂ Z2, sampling window Γ ⊆ Z2,

and set Λ2 = Γ: Λ1 ⊂ Z2. Observe that T (f̂ ) applied to a filter h ∈ C|Λ1| acts as a

convolution by the Fourier coefficients of the partial derivatives of f following by a

projection onto Λ2:

T (f̂ )h =

PΛ2(h ∗ ∂̂xf)

PΛ2(h ∗ ∂̂yf)

 (3.33)

where PΛ2 is the projection of an (infinite) 2-D array onto the index set Λ2, or equiv-

alently, multiplication by an array that is one on Λ2 and zero elsewhere. Likewise,

the adjoint T (f̂ )∗ applied to the two-component array q = (qx, qy) ∈ C2|Λ2| is given

by

T (f̂ )∗q = PΛ1(qx ∗ ∂̂yf + qy ∗ ∂̂yf). (3.34)

Translating the above to spatial domain, for all ϕ ∈ BΛ1 , the action of the linear

operator S(f) : BΛ1 → B2
Λ2

can be expressed compactly as

S(f)ϕ = DΛ2 ∗ (ϕ∇f) ∈ B2
Λ2
, (3.35)

where ϕ∇f is understood as a tempered distribution, and the convolution is applied

separately to each vector field component. Here convolution with DΛ2 acts as a

bandlimiting operation on vector fields, i.e., projection onto B2
Λ2

. Similarly, for ρ =

(ρ1, ρ2) ∈ B2
Λ2

, the adjoint S(f)∗ acts as

S(f)∗ρ = DΛ1 ∗ (ρ · ∇f) ∈ BΛ1 (3.36)
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which is the spatial domain equivalent of the adjoint matrix T (f̂ )∗. More expliclty, if

f = 1U where U is a simply connected region with smooth boundary ∂U , a straight-

forward argument using the divergence theorem shows that the function S(f)ϕ is

given pointwise as the weighted curve integral

(S(f)ϕ)(r) =

∮
∂U

DΛ2(r − r′)ϕ(r′)n(r′) ds(r′), (3.37)

for all r ∈ [0, 1]2, where n(r′) is the outward unit normal to the curve ∂U at r′, and

ds is the arc-length element. Likewise, S(f)∗ρ is the function given pointwise by

(S(f)∗ρ)(r) =

∮
∂U

DΛ1(r − r′) [ρ(r′) · n(r′)] ds(r′), (3.38)

for all r ∈ [0, 1]2. These formulas can be generalized to an arbitrary piecewise constant

function f =
∑

i ai1Ui by linearity. However, in the remainder we focus on the case

where f = 1U to simplify our arguments.

3.8.2 Fundamental subspaces of S(f) and dimensions

Under the conditions of Theorem 1, the nullspace of T (f̂ ) is spanned by shifts of

the minimal annihilating filter µ̂0. Mapped to spatial domain, this space consists of

all multiples of the minimal degree polynomial γ = η µ0 such that γ is bandlimited

to Λ1. We denote this space by

(µ0)Λ1 := {η µ0 : η ∈ BΛ1 : Λ0}. (3.39)

Note that (µ0)Λ1 is a subspace of BΛ1 with dimension |Λ1 : Λ0|. Therefore, the dimen-

sion of the kernel of S(f), denoted by kerS(f), is given by

dim kerS(f) = |Λ1 : Λ0|. (3.40)
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By the rank-nullity theorem, the dimension of the image of S(f), denoted by imS(f),

is

dim imS(f) = |Λ1| − |Λ1 : Λ0| = R. (3.41)

Likewise, the dimension of the coimage imS(f)∗ (corresponding to the row space of

T (f̂ )) is also R. Furthermore, since imS(f)∗ = [kerS(f)]⊥, we have

imS(f)∗ = (µ0)⊥Λ1
. (3.42)

This means that any γ ∈ BΛ1 is in the coimage of S(f) if and only if γ is orthogonal

to every trigonometric polynomial of the form η µ0 ∈ BΛ1 , or equivalently,

〈γ, η µ0〉 =

∫
[0,1]2

γ(r)η(r)µ0(r) dr = 0 (3.43)

for all η ∈ BΛ1 : Λ0 .

3.8.3 Basis for the coimage of S(f) (corresponding to the row space of T (f̂))

Let s ∈ [0, 1]2, and set ϕs ∈ BΛ1 to be the translated Dirichlet kernel:

ϕs(r) = DΛ1(r − s) for all r ∈ [0, 1]2. (3.44)

Equivalently, ϕs ∈ BΛ1 is the trigonometric polynomial specified in Fourier domain

as

ϕ̂s[k] =


e−j2πs·k if k ∈ Λ1

0 if k 6∈ Λ1

. (3.45)
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Observe that the inner product of ϕs with any other trigonometric polynomial η ∈ BΛ1

is given by the point-evaluation4 of η at s:

〈η, ϕs〉 =
∑
k∈Λ1

η̂[k]ej2πk·s = η(s). (3.46)

Suppose now that the point s satisfies µ0(s) = 0. In this case, we see that ϕs is

necessarily in the coimage imS(f)∗ = (µ0)⊥Λ1
since we have

〈γµ0, ϕs〉 = γ(s)µ0(s) = 0 (3.47)

for any multiple of the minimal polynomial γµ0 ∈ BΛ1 , i.e., any element in kerS(f) =

(µ0)Λ1 .

We will now show how to construct a basis for the coimage of S(f) out of elements

having the form ϕri for some ri, i = 1, ..., R belonging to the zero set of µ0. For an

arbitrary collection of R points {ri}Ri=1 ⊂ {µ0 = 0}, we are not guaranteed that the set

of functions {ϕri}Ri=1 is linearly independent. However, we will show that there exists

a constant M = M(Λ0,Λ1) such that for any M distinct points {ri}Mi=1 ⊂ {µ0 = 0} we

can always find a subset of R linearly independent basis functions from the collection

{ϕri}Mi=1. The constant M is related the maximum number of isolated zeros that a

system of two trigonometric polynomials can have. The following lemma, which is a

consequence of the BKK bound in enumerative algebraic geometry5, puts a bound on

M . See section 3.11 for proof.

Lemma 11. Let Λ1 and Λ0 be rectangular index sets such that Λ0 ⊂ Λ1, and set R =

|Λ1| − |Λ1 : Λ0|. For any trigonometric polynomials µ0 and µ1 bandlimited to Λ0 and

Λ1, respectively, the maximum number M of isolated solutions of µ0(r) = µ1(r) = 0

4In the context of reproducing kernel Hilbert spaces [3], this property demonstrates that ϕs is a
reproducing kernel for the Hilbert space BΛ1 .

5Named after mathematicians Bernstein, Kushnirenko, and Khovanskii; see, e.g., [70].
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is bounded as

M < R + |Λ0|. (3.48)

We now prove equivalents of Lemmas 6 and 7 in terms of the spatial domain

operator S(f):

Lemma 12. Let {r1, ...., rN} be any collection of N distinct points on the curve

{µ0 = 0}, where N ≥ R+ |Λ0|. Then the coimage space imS(f)∗ = (µ0)⊥Λ1
is spanned

by the set of shifted Dirichlet kernels ϕri(r) = DΛ1(r − ri) for all i = 1, ..., N , i.e.,

span {ϕri}
N
i=1 = (µ0)⊥Λ1

. (3.49)

In particular, there exists a subset of R = |Λ1| − |Λ1 : Λ0| elements of {ϕri}
N
i=1 that is

a basis for the coimage space (µ0)⊥Λ1
.

Proof. All the functions ϕri are in (µ0)⊥Λ1
since each ri belongs to the zero set of µ0

and so 〈ϕri , γµ0〉 = γ(ri)µ0(ri) = 0. This implies that

span {ϕri}
M
i=1 ⊆ (µ0)⊥Λ1

. (3.50)

Our focus is on proving (3.49) with equality. For this, it is sufficient to show that any

function orthogonal to span{ϕri}Ni=1 is in (µ0)Λ. Assume that there is a η(r) ∈ BΛ1

that is in the orthogonal complement of span{ϕri}Ni=1. This is only possible if

〈η, ϕri〉 = η(ri) = 0, for all i = 1, ..., N. (3.51)

Therefore, both η and µ0 have N zeros in common. By Lemma 11 this is only possible

if η contains µ0 as a factor, since µ0 is the minimal degree polynomial for the edge

set. This implies that all functions in the orthogonal complement of span{ϕri}Mi=1 are
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in (µ0)Λ1 , or equivalently

span {ϕri}
M
i=1 ⊇ (µ0)⊥Λ1

, (3.52)

which together with (3.50) proves (3.49).

Finally, we also know that the dimension of (µ0)⊥Λ1
is equal to R < M . Thus, one

can select a subset of R basis functions ϕri that are linearly independent and hence

a basis for (µ0)⊥Λ1
.

Translating this result to Fourier domain, we see that the row space of T (f̂ ) is

spanned by the vectors of Fourier coefficients (ϕ̂ri [k] : k ∈ Λ1) ∈ C|Λ1|, for i = 1, ..., R.

Equivalently, these vectors can be expressed as the columns of the Vandermonde-like

matrix Erow specified by (3.23), which proves Lemmas 6 and 7.

3.8.4 Discretization of curve integrals: quadrature formula

Using the results from the previous subsection, we now introduce a quadrature

formula for curve integrals, which we will use to determine the range space imS(f)

in the next subsection.

Let γ be any function in BΛ for any Λ ⊇ Λ0. Then from the orthogonal decom-

position BΛ = (µ0)Λ ⊕ (µ0)⊥Λ we can decompose γ as

γ(r) =
S∑
i=1

aiDΛ(r − ri) + ϕ(r)µ0(r), (3.53)

where S = |Λ| − |Λ: Λ0|, and where {DΛ(r − ri)}Si=1 defines a basis of (µ0)⊥Λ . Here,

the coefficients ai in (3.53) are obtained uniquely as


a1

...

aS

 = D−1


γ(r1)

...

γ(rS)

 , (3.54)
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where D ∈ RS×S is the symmetric matrix with entries [D]i,j = DΛ(ri − rj) for

1 ≤ i, j ≤ S. Or, put more compactly, a = D−1g, where g = (γ(r1), ..., γ(rS))T .

Lemma 13. Let f = 1U where U is a simply connected region with smooth boundary

∂U , which is the zero levelset of µ0 ∈ BΛ0 and let γ ∈ BΛ. Consider the curve integral

of the form

q =

∮
∂U

γ(r)n(r) ds(r), (3.55)

where n(r) = ∇f(r)/|∇f(r)| ∈ R1×2 is the unit normal on the curve ∂U . The curve

integral can be evaluated using the quadrature formula

q =
S∑
i=1

γ(ri) wi, (3.56)

where the S = |Λ| − |Λ : Λ0| points {ri}Si=1 belong to the curve {µ0 = 0}, and the

corresponding weight vectors wi ∈ R1×2, i = 1, .., S, are specified by


w1

...

wS

 = D−1


v1

...

vS

 . (3.57)

where vi =
∮
∂U
DΛ(r − ri)n(r)ds(r) ∈ R1×2.

Proof. Decomposing γ(r) using (3.53), we obtain

∮
∂U

γ(r)n(r) ds(r) =
S∑
i=1

ai

∮
∂U

DΛ(r − ri)n(r) ds(r)︸ ︷︷ ︸
:=vi

(3.58)

The above sum can be expressed in the vector form as

S∑
i=1

aivi = a∗V = g∗D−1V (3.59)
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where V = [vT1 , ...,v
T
S ]T ∈ CS×2. Setting W = D−1V = [wT

1 , ...,w
T
S ]T ∈ CS×2 we

obtain (3.56).

3.8.5 Basis for the range of S(f) (corresponding to the column space of T (f̂ ))

We now introduce a basis for imS(f), which will be used to prove Lemma 8.

Lemma 14. The range of S(f), denoted by imS(f) is specified by

imS(f) = span{wiDΛ2(r − ri)}Ri=1 (3.60)

for an appropriate choice of points {ri}Ri=1 ⊂ {µ0 = 0} with R = |Λ1| − |Λ1 : Λ0|, and

where the weight vectors wi are specified by (3.57).

Proof. Consider an arbitrary element ρ = (ρ1, ρ2) ∈ imS(f). By definition there

exists a ψ ∈ BΛ1 such that ρ = S(f)ψ = BΛ2(ψ∇f) = DΛ2 ∗ (ψ∇f). Also, by the

integral representation in (3.37), we have

ρ(r) =

∮
∂U

ψ(s)DΛ2(r − s)n(s) ds

=
S∑
i=1

ψ(ri)DΛ2(r − ri)wi, (3.61)

where we used Lemma 13 in the last step with S = |Γ| − |Γ : Λ0| since the integrand

ψ(s)DΛ2(r − s) belongs to BΓ. The above relation shows that any ρ(s) ∈ imS(f)

can be expressed as a linear combination of the functions DΛ2(s − ri)wi, for i =

1, .., S. Thus, we have imS(f) ⊂ span{DΛ2(r − ri)wi}Si=1. We also know that

dim (imS(f)) = R < S. This implies that we can select a subset of R vectors from

the set {DΛ2(r − ri)wi}Si=1 that are linearly independent, which will span imS(f),

and hence define a basis.

Correspondingly, the column space of T (f̂) is spanned by the Fourier coefficients

of the basis vectors DΛ2(r − ri)wi, or equivalently, the columns of the 2|Λ2| × R
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weighted Vandermonde-like matrix Ecol specified by (3.24).

3.8.6 Incoherence Bounds

3.8.6.1 Projection onto row subspace

Let Erow = Erow(P ) be any basis for the row space V of T (f̂ ) specified by (3.23),

whose columns are vectorized Fourier coefficients of the translated and normalized

Dirichlet kernels ϕi(r) = 1√
|Λ1|

DΛ1(r − ri), i = 1, ..., R, for some set of admissible

nodes P = {r1, ..., rR} ⊂ {µ0 = 0}. Projecting the measurement basis matrix Ak

onto V , we have

‖PV Ak‖2
F = ‖AkErow(E∗rowErow)−1E∗row‖2

F

≤ [λmin(E∗rowErow)]−1‖AkErow‖2
F

Since Ak selects |ω(k)| rows of Erow, each of which has R entries of magnitude

1/
√
|Λ1|, we have

‖AkErow‖2
F =

1

|ω(k)|
·R · |ω(k)| · 1

|Λ1|
=

R

|Λ1|
=
Rcs
|Γ|

(3.62)

where cs = |Γ|/|Λ1|. Hence,

‖PV Ak‖2
F ≤ [λmin(E∗rowErow)]−1R cs

|Γ|
. (3.63)

Minimizing over all sets of admissible nodes P in the construction of Erow gives the

final bound

‖PV Ak‖2
F ≤

ρR cs
|Γ|

. (3.64)

3.8.6.2 Projection onto column space

Let Ecol = Ecol(P ) be a basis for the column space of T (f̂ ) specified by (3.24),

whose columns are vectorized Fourier coefficients of the translated and weighted
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Dirichlet kernels 1√
|Λ2|

wi
‖wi‖DΛ2(r − ri), for some set of admissible nodes

P = {r1, ..., rR} ⊂ {µ0 = 0}. Observe the columns of Ecol are defined to have unit

`2-norm. Following the same steps as in the row space bound, we have

‖PUAk‖2
F = ‖Ecol(E

∗
colEcol)

−1E∗colAk‖2
F

≤ [λmin(E∗colEcol)]
−1‖E∗colAk‖2

F

Expanding the norm ‖E∗colAk‖2
F gives

‖E∗colAk‖2
F =

1

|Λ2|

R∑
i=1

1

|ω(k)|
∑
`∈ω(k)

∣∣∣∣〈 `

‖`‖
,
wi

‖wi‖

〉∣∣∣∣2
≤ R

|Λ2|
≤ Rcs
|Γ|

.

Hence, we have

‖PUAk‖2
F ≤

ρ′Rcs
|Γ|

. (3.65)

where ρ′ is defined similarly to ρ as:

ρ′ = min
P⊂{µ0=0}
|P |=R

1

λmin[Ecol(P )∗Ecol(P )]
, (3.66)

Finally, we show how to bound ρ′ by ρ in (3.65). Observe that we can re-define

ρ and ρ′ in terms of the minimum singular value of the basis matrices Erow(P ) and

Ecol(P ), according to the correspondences:

λmin(Ecol(P )∗Ecol(P )) = σ2
min(Ecol(P )),

λmin(Erow(P )∗Erow(P )) = σ2
min(Erow(P )).

We will show σ2
min(Erow(P )) ≤ σ2

min(Ecol(P )), or equivalently,

[λmin(Ecol(P )∗Ecol(P ))]−1 ≤ [λmin(Erow(P )∗Erow(P )]−1, for any set P consisting of R
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points on the edge set. The claim then follows immediately by taking the minimum

over all such sets P .

To ease notation, we drop the dependence on the set P in the following. Observe

that we can express Ecol as

Ecol =

ẼcolWx

ẼcolWy

 (3.67)

where Wx = diag( w1,x

‖w1‖ , ...,
wR,x
‖wR‖

), Wy = diag( w1,y

‖w1‖ , ...,
wR,y
‖wR‖

), and Ẽcol ∈ C|Λ2|×R is

the Vandermonde-like matrix given entrywise by [Ẽcol]i,j = ej2πki·ri ,

for all ki ∈ Λ2, 1 ≤ j ≤ R. In other words, Ẽcol has the same structure as Erow,

but is built with respect to Λ2 instead of Λ1. In particular, since we always assume

Λ1 ⊂ Λ2, the matrix Erow can be embedded as a submatrix of Ẽcol by restricting

the rows of Ẽcol to those indexed by Λ1. By the variational characterization of the

minimum singular value of a matrix, we have

σ2
min(Ecol) = min

‖u‖=1
‖Ecolu‖2

= min
‖u‖=1

‖ẼcolWxu‖2 + ‖ẼcolWyu‖2

≥ σ2
min(Ẽcol) min

‖u‖=1
(‖Wxu‖2 + ‖Wyu‖2)︸ ︷︷ ︸

=1

(3.68)

where the last line follows sinceWx andWy are diagonal matrices satisfying |(Wx)i,i|2+

|(Wy)i,i|2 = 1. Finally, since Erow is a submatrix of Ẽcol, we also have σ2
min(Erow) ≤

σ2
min(Ẽcol), which together with (3.68) gives the desired inequality.

3.9 Appendix B: Proof of Main Theorem

3.9.1 Reformulation in lifted domain

We now reformulate the recovery of f̂ as a matrix recovery problem in the lifted do-

main using the sampling basis {Ak}k∈Γ defined in (3.11). Let any matrix in the range

of the lifting T be called a structured matrtix. We denote the projection operator cor-
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responding to a single sampling location k byAk(X) = 〈Ak,X〉Ak. Since {Ak}k∈Γ is

an orthonormal basis, for any structured matrix X, we have
∑

k∈ΓAk(X) = A(X) =

X. Since Ak is not the basis for a general X ∈ C2|Λ2|×|Λ1|, we also define the

projection operator to the space orthogonal to the space of structured matrices by

A⊥(X) = (I −A)(X), where I is the identity operator. In particular, the constraint

A⊥(X) = 0 implies that X is a structured matrix.

The recovery of f from its partial Fourier samples f̂ [k],k ∈ Ω, can thus be

reformulated as the completion of a structured matrix X from its measurements

Ak,k ∈ Ω:

minimizeX ‖X‖∗ subject to QΩ(X) = QΩ(T (f̂ )), (3.69)

where QΩ satisfies E[QΩ] = I and is defined as

QΩ =
|Γ|
|Ω|
AΩ +A⊥. (3.70)

3.9.2 Conditions for perfect recovery

The tangent space T of the matrix X is defined as T := {UXH
1 + X2V

H : X1 ∈

C|Λ2|×R,X2 ∈ C|Λ1|×R} where X = UΛVH is the singular value decomposition of

X. The orthogonal complement of T is denoted by T⊥. We first show that if PT ≈

PTQΩPT , and if an approximate dual certificate that satisfies certain conditions exist,

we obtain perfect recovery.

Lemma 15. Consider a multiset Ω that contains m random indices. Suppose the

sampling operator QΩ obeys

‖PT − PTQΩPT‖ ≤
1

2
(3.71)



www.manaraa.com

85

and there exists an approximate dual certificate matrix W satisfying

Q⊥Ω(W ) = 0 (3.72)

‖PT (W −UV ∗)‖F ≤
1

6n
(3.73)

‖P⊥T (W )‖ ≤ 1

2
. (3.74)

where n = |Γ|. Then T (f̂) is the unique solution to (3.69).

See Section 3.12.1 for proof.

Equation (3.71) suggests that QΩ ≈ I on the tangent space. The conditions

(3.72), (3.73), and (3.74) indicates the existence of a W, which approximates the

exact dual certificate UV∗. The above lemma is in line with [23, Lemma 1], with the

exception of the third condition, indicated by (3.73). To satisfy (3.71), we bound the

deviation of PTQΩPT from PT in the following lemma.

Lemma 16. Suppose (3.14) holds. Then we have

‖PT − PTQΩPT‖ ≤ ε ≤ 1

2
(3.75)

with probability exceeding 1 − n−4, provided that m > c1ρR cs log(n), and ε < 1/e is

a small quantity.

We prove this using [111, Theorem 1.6] (see Section 3.12.2).

3.9.3 Construction of the approximate dual certificate W

We will now use the golfing scheme of [23, 46] to construct an approximate dual

certificateW , which satisfies (3.72), (3.73), and (3.74). In particular, Ω can be further

divided into j0 multi-sets, Ωi; 1 ≤ i ≤ j0, each containing m̃ = m/j0 i.i.d samples,

sampled with replacement. We start with F0 = UV ∗, and follow the following steps:

1. F0 = UV ∗ and set j0 = 3 log 1
ε
n.
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2. ∀i(1 ≤ i ≤ j0),Fi = PT (I − QΩi)PT (Fi−1)

3. W =
∑j0

j=1QΩiFj−1

Step 3 ensures that W satisfies (3.72) since each summand Wi = QΩiFj−1 satisfies

Q⊥Ω(Wi) = 0. The recursive construction also satisfies (3.73). In particular,

‖PT (W −UV∗)‖F = ‖PTFj0‖F

≤ εj0‖F0‖F = εj0
√
R ≤ εj0n

Now we focus on showing that W satisfies (3.74). Note that if j0 is chosen as

3 log 1
ε
n, assuming n > 6, we have εj0n < 1

6n
.

Lemma 17. For any matrix M, there exists some numerical constant c2 such that

‖(I − QΩ) (M)‖ ≤ c2

√
n log n

m
‖M‖A,2 +

c2n log n

m
‖M‖A,∞, (3.76)

with probability at least 1− n−10. Here,

‖M‖A,∞ = max
k∈Γ

∣∣∣∣〈Ak,M〉
|ωk|

∣∣∣∣ (3.77)

‖M‖A,2 =

√√√√∑
k∈Γ

|〈Ak,M〉|2

|ωk|
(3.78)

See Section 3.12.3 for proof.

Lemma 18. Assume that there exists a constant µ5 such that ωk‖PT (Ak)‖A,2 ≤ µ5R
n

.

For any matrix M, we have

‖PT [(I − QΩ)(M)]‖A,2 ≤ c3

√
µ5R log n

m

·

(
‖M‖A,2 +

√
n log n

m
‖M‖A,∞

)
,
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with probability at least 1− n−10.

See Section 3.12.4 for proof.

Lemma 19. For any matrix M ∈ T , there exists some numerical constant c4, such

that

‖PT [(I − QΩ)(M)]‖A,∞ ≤ c4

√
ρcsR log n

m

√
ρcsR

n
‖M‖A,2

+
c4ρcsR log n

m
‖M‖A,∞,

with probability at least 1− n−10.

See Section 3.12.6 for proof.

From the golfing scheme, we have ‖PT⊥(W)‖ ≤
∑j0

j=1 ‖PT⊥QΩiPTFj−1‖. Using

Lemma 17 and substituting from Lemma 18 and Lemma 19, we have

‖PT⊥QΩiFj−1‖ ≤
(

1

2

)j0−1

c2

{√
n log n

m̃
‖F0‖A,2

+
n log n

m̃
‖F0‖A,∞

}

The last inequality holds if m̃ = m/j0 � max (µ5, ρcs)R log n. Substituting for j0 =

3 log 1
ε
(n) assumed in the golfing scheme, we require m� c6 max (µ5, ρcs)R log2 n to

satisfy the above inquality. See Section 3.12.7 for details. We will now present the

lemmas bounding ‖F0‖A,2 and ‖F0‖A,∞, where F0 = UV∗.

Lemma 20. With the incoherence measure ρ, one can bound

‖UV∗‖A,∞ ≤
ρ csR

n
(3.79)

‖UV∗‖2
A,2 ≤

c7µ3 cs log2(n)R

n
(3.80)

‖PT (
√
ωα Aα)‖2

A,2 ≤
c7µ3cs log2(n)R

n
, ∀α ∈ Γ (3.81)
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for µ3 = 3ρ and c7 is some constant.

See Section 3.12.8 for proof. From (3.81), we see that the constant µ5 in Lemma

19 chosen as µ5 = c7 µ3 cs log2(n) such that ωk‖PT (Ak)‖A,2 ≤ µ5R
n

. Substituting for

µ5, we observe that the dominant term has its dependence on log4(n).

Thus, ‖PT⊥QΩiFj−1‖ < 1/2 if m > c6c7 cs (3ρ) R log4(n).

3.10 Proof of Theorem 10

The proof we give is multi-dimensional generalization of the proof of [85]. We will

make use the following lemma from [85]:

Lemma 21. There is an entire function cE(t) whose Fourier transform is supported

in the interval −∆,∆, which satisfies cE(t) < IE(t)—the indicator function of the

interval E = [−n/2, n/2].

∫ ∞
−∞

(IE(t)− cE(t)) dt =
1

∆
(3.82)

The above function cE(t) is known as the Beurling-Selberg minorant of IE(t).

Note that ÎE(0) = n and hence ĉE(0) = n − 1/∆, where ÎE is the Fourier transform

of IE.

We now give the proof of Theorem 10:

Proof. We note that λmin (E∗rowErow) = min‖u‖=1 ‖Erowu‖2. From the definition of

Erow, we have

Erowu = 1√
|Λ1|

∑R
i=1 ui exp (j2πk · ri) ; k ∈ Λ1. We consider the continuous domain

function

v(f) =
1√
|Λ1|

R∑
i=1

ui exp (j2πf · ri) ; f = (f1, f2) ∈ R2 (3.83)

and rewrite the discrete summation in ‖Erowu‖2 as the integral

‖Erowu‖2 =
1

|Λ1|

∫ ∞
−∞
|v(f)|2 IE(f1)IE(f2)h(f1)h(f2) df (3.84)
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where h(f) =
∑∞

m=−∞ exp (j2πfm) is the Dirac comb function and IE(f) is the

indicator function of the region

[−
√
|Λ1|

2
,
√
|Λ1|

2
]. Minorizing IE by cE, specified by Lemma 21, we obtain

‖Erowu‖2 ≥ 1

|Λ1|

∫ ∞
−∞
|v(f)|2 cE(f1)cE(f2)h(f1)h(f2) df (3.85)

=
1

|Λ1|

R∑
i=1

R∑
j=1

uiu
∗
j

∫ ∞
−∞

exp (j2πf(ri − rj)) cE(f1)cE(f2)h(f1)h(f2) df1df2

=
1

|Λ1|

R∑
i=1

R∑
j=1

∞∑
m=−∞

∞∑
m′=−∞

ui u
∗
j ĉE(xi − xj −m)ĉE(yi − yj −m′) (3.86)

In the last step, we used the expression of the Dirac comb function. Since the Fourier

transform of cE is supported within [−∆,∆], the terms ĉE(xi − xj −m) and ĉE(xi −

xj − m) are non-zero only if xi = xj;m = 0 and yi = yj;m = 0, since |xi − xj| >

∆, |yi − yj| > ∆; i 6= j. Thus, we have

‖Erowu‖2 ≥ 1

|Λ1|

R∑
i=1

R∑
j=1

ui u
∗
j ĉE(xi − xj)ĉE(yi − yj)︸ ︷︷ ︸

δ(r−r′)

(3.87)

=
1

|Λ1|
ĉE(0)2 ‖u‖2 =

(
1− 1√

|Λ1| ∆

)2

(3.88)

3.11 The BKK bound (Proof of Lemma 11)

The BKK bound in enumerative algebraic geometry (see, e.g., [70]) is a well-known

result that relates maximum number of isolated solutions of a system of polynomials

to their coefficient support sets. Specifically, the BKK bound is typically stated in

terms of Laurent polynomials, i.e., functions of the form q(t, s) =
∑∞

k=−∞
∑∞

`=−∞ t
ks`

with t, s ∈ C, and only finitely many non-zero coefficients ck,` ∈ C. Since a trigono-

metric polynomial is the restriction of a Laurent polynomial to the complex unit

torus {(t, s) = (ej2πx, ej2πy) : x, y ∈ [0, 1)}, the result also holds for trigonometric
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polynomials, which we state below:

Theorem 22 (BKK Bound). Let µ1 and µ2 be trigonometric polynomials with coef-

ficient supports Ω1 and Ω2, and let P1 = conv(Ω1) and P2 = conv(Ω1), where conv(·)

denotes the convex hull of a set in Z2 treated as a subset of R2. The number of isolated

solutions of the system µ1(r) = µ2(r) = 0 for r ∈ [0, 1)2 is at most

M(Ω1,Ω2) := area(P1 + P2)− area(P1)− area(P2),

where area(·) denotes the usual Euclidean area. In particular, if µ1 is irreducible, and

the number of common isolated zeros of µ2 and µ1 is greater than M(Ω1,Ω2), then

µ1 must divide µ2.

When Λ0 and Λ1 are rectangular index sets satisfying Λ0 ⊂ Λ1, a straightforward

computation reveals that

R <M(Λ0,Λ1) < R + |Λ0|,

which establishes the bound in Lemma 11.

3.12 Proofs of results in Appendix B

3.12.1 Proof of Lemma 15

Proof. LetX be the unique minimizer for the convex optimization problem (3.69) and

H be a perturbation of X. To prove exact recovery of (3.69), it suffices to show the

existence of an exact dual certificate W such that ‖X+H‖∗ > ‖X‖∗+Re(〈W ,H〉).

With an approach similar to [46], we now show that the existence of an approximate

dual certificate will guarantee unique recovery. We separately consider the two cases

based on the relative energies of HT and H⊥T , where H = HT + H⊥T and T denotes

the tangent space.
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3.12.1.1 Case 1: ‖HT‖F > 2n ‖H⊥T ‖F

We will show that X + H is infeasible (i.e, ‖QΩH‖F > 0), if QΩ ≈ I on the

tangent space (i.e, (3.71) is satisfied). We have

‖QΩ

(
HT +H⊥T

)
‖F ≥ ‖QΩHT‖F − ‖QΩH

⊥
T ‖F (3.89)

We upper bound the second term as ‖QΩH
⊥
T ‖F ≤ ‖QΩ‖ ‖H⊥T ‖F . By definition,

we have ‖QΩ‖ = ‖ n
m
AΩ + A⊥‖, from which we obtain ‖QΩ‖ =

∥∥ n
m
AΩ +A⊥

∥∥ ≤
‖ n
m

(
A+A⊥

)
‖ = n

m
< n. We omit the m term in the denominator to remove the

dependence on m. Hence, we have ‖QΩH
⊥
T ‖F ≤ n‖H⊥T ‖F . We now lower bound the

first term in (3.89):

‖QΩHT‖2
F ≥ ‖HT‖2

F

1− ‖PT − PTQΩPT‖︸ ︷︷ ︸
≤ 1

2


Since we assumed that ‖HT‖F > n ‖H⊥T ‖F , we have

‖QΩH‖F ≥
(√

2− 1
)
n ‖H⊥T ‖F > 0, implying that such an H is infeasible.

3.12.1.2 Case 2: ‖HT‖F ≤ 2n ‖H⊥T ‖F

We now show that if HT is small and X +H is feasible, then the nuclear norm

of X + H is larger than X. Since X + H is feasible, we have QΩ(H) = 0. If

X = UΣV ∗ represents the singular value decomposition of X, the subgradient of

‖X‖∗ is parametrized as UV ∗ + Z0; Z0 ∈ T⊥. Z0 is defined as Z0 = B⊥T , for any

B, such that
〈
B,H⊥T

〉
= ‖H⊥T ‖∗ and ‖B‖ < 1. By the definition of subgradients6,

we have ‖X +H‖∗ ≥ ‖X‖∗ + Re(〈UV ∗,H〉+ 〈Z0,H〉). We consider a W in the

6Technically speaking, subgradients of the nuclear norm over complex matrices are not defined.
However, the nuclear norm of a complex matrix is equivalent to the nuclear norm of an expanded
matrix in terms of its real and imaginary parts, and the subgradient condition above using real parts
of the matrix inner product is equivalent to the subgradient condition for the expanded matrix (see,
e.g., Sec. 4.4 of: K. Usevich and P. Comon. “Quasi-Hankel low-rank matrix completion: a convex
relaxation.” arXiv preprint, arXiv:1505.07766 (2015).)
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range space of QΩ that satisfies (3.72) Q⊥Ω(W ) = 0, where Q⊥Ω is the projection

Q⊥Ω = A−AΩ. Using this W , we rewrite the above relation as

‖X +H‖∗ ≥ ‖X‖∗ +Re(〈W ,H〉)︸ ︷︷ ︸
0

+Re(〈Z0,H〉)︸ ︷︷ ︸
=‖H⊥T ‖∗

+Re(〈UV ∗ −W ,H〉)

≥ ‖X‖∗ + ‖H⊥T ‖∗ − 〈W −UV ∗,H〉 (3.90)

The second term in (3.90) vanishes sinceW lives in the range ofQΩ (i.e., Q⊥Ω(W ) = 0)

while H lives in the kernel of QΩ (i.e., since QΩ(H) = 0). From the definition of Z0,

the third term is equal to ‖P⊥T H‖∗. We now focus on the last term. If W satisfies

(3.73) and (3.74), we have

〈W −UV ∗,H〉 ≤ ‖PT (W −UV ∗)‖F ‖HT‖F + ‖P⊥TW ‖ ‖H⊥T ‖∗

≤ 1

6 n
‖HT‖F +

1

2
‖H⊥T ‖F

Substituting in (3.90) and using ‖M‖∗ ≥ ‖M‖F , we have

‖X +H‖∗ ≥ ‖X‖∗ +

(
1

2
− 1

3

)
‖H⊥T ‖F (3.91)

We used ‖HT‖F ≤ 2n ‖H⊥T ‖F in the above. The above inequality implies that

‖X +H‖∗ ≥ ‖X‖∗ and hence X is the unique minimizer.

3.12.2 Proof of Lemma 16

Proof. Substituting the definition of QΩ in (3.71), we see that

PT (I − QΩ)PT = PT
(
A− n

m
AΩ

)
PT (3.92)
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We set Zk = n
m
PTAkPT with E[Zk] = 1

m
PTAPT , we obtain

PTAPT −
n

m
PTAΩPT =

∑
k∈Ω

E[Zk]−Zk︸ ︷︷ ︸
Sk

We apply the operator Bernstein’s inequality [111, Theorem 1.6] to determine

P
(∥∥∑

k∈Ω Sk
∥∥ ≥ ε

)
. Using steps similar to [23, Lemma 3], we obtain the upper

bounds ‖E [S2
k ] ‖ ≤ 4ρRcs

m
and ‖Sk‖ ≤ 4ρRcs

m
. We now apply the matrix Bernstein’s

inequality [111, Theorem 1.6] to obtain

P

(∥∥∥∥∥∑
k∈Ω

Sk

∥∥∥∥∥ ≥ 1

2

)
≤ n exp

(
−1/8

4ρRcs
m

(1+1/6)

)
(3.93)

We desire P
(∥∥∑

k∈Ω Sk
∥∥ ≥ ε

)
< (n)−b. Setting these values in the above inequality,

we obtain

(n)−b ≥ n exp
(
−3m

112 ρRcs

)
. Taking log of both sides and simplifying, we obtain

m ≥ (b+ 1)
112

3︸ ︷︷ ︸
c1

ρR cs log(n) (3.94)

3.12.3 Proof of Lemma 17

Proof. We define

Sk =
n

m
Ak −

1

m
A, (3.95)

which satisfies E(Sk) = 0 and ‖I − QΩ‖ = ‖
∑

k∈Ω Sk‖. To bound the right hand

side using operator Bernstein’s inequality, we require the bounds ‖Sk(M)‖ ≤ B and

σ2 = max {‖
∑

k E[SkS∗k ]‖ , ‖
∑

k E[S∗kSk]‖}. We first consider

S∗kSk(M) ≤
( n
m

)2

A∗kAk(M) =
( n
m

)2

|〈Ak,M〉|2 AT
kAk
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≤
( n
m

)2 |〈Ak,M〉|2

ωk

I|Λ1|×|Λ1|

which gives
∥∥E [∑k∈Ω S∗kSk

]∥∥ = m
n

∥∥∑
k∈Γ S∗kSk

∥∥ ≤ n
m
‖M‖2

A,2. Similarly, we have

SkS∗k(M) ≤
( n
m

)2

|〈Ak,M〉|2 AkA
T
k

≤
( n
m

)2 |〈Ak,M〉|2

ωk

(
k

‖k‖
kT

‖k‖

)⊗
I|Λ2|×|Λ2|,

where k = (k1, k2)T , which also gives the bound
∥∥E [∑k∈Ω SkS∗k

]∥∥ ≤ n
m
‖M‖2

A,2.

Here,
⊗

denotes the Kroneker product. Similar to the arguments in [23], we have

‖SkM‖ ≤ 2n
m
‖M‖A,∞. Combining these terms into [23, Lemma 11], the result is

proved.

3.12.4 Proof of Lemma 18

Proof. We note that

‖PT [(I − QΩ)(M)]‖2
A,2 =

∑
k∈Γ

|〈Ak,PT [(I − QΩ)(M)]〉|2

|ωk|
(3.96)

We assume that AΩ =
∑m

i=1Aαi , where αi are independent indices picked at random.

Correspondingly, we consider vectors zαi of length n = |Γ|, whose entries are specified

by

zα (k) =
1
√
ωk

〈
Ak,PT

[ n
m

(Aα −A)(M)
]〉

(3.97)

Note that the desired bound ‖PT [(I − QΩ)(M)]‖A,2 = ‖
∑m

i=1 zαi‖2. We have E(zα) =

0. We proceed as [23, Lemma 5] and from the definition of µ5, we have, ‖zαi‖2 ≤

2
√

nµ5R
m2 ‖M‖A,∞ and as zαi ’s are vectors,

∥∥∥∥∥E
[

m∑
i=1

zαiz
∗
αi

]∥∥∥∥∥ =

∥∥∥∥∥E
[

m∑
i=1

z∗αizαi

]∥∥∥∥∥ ≤ 4µ5R

m
‖M‖2

A,2
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Substituting these bounds in the operator Bernstein’s inequality [23, Lemma 11], the

result is proved.

3.12.5 Incoherence between two sampling bases

The proof of Lemma 19 relies on the bound on |〈Aβ,PTAα〉|. We introduce the

following lemma to establish the incoherence between two sampling bases:

Lemma 23. Under the incoherence conditions of proposition 3 and definition 9 of

the main text,

|〈Aβ,PTAα〉| ≤ 3

√
ωβ
ωα

ρ

|Γ|

We will now bound |〈Aβ,PTAα〉|. We see that

|〈Aβ,PTAα〉| ≤ |〈Aβ,UU∗Aα〉|+ |〈Aβ,AαVV∗〉|+ |〈Aβ,UU∗AαVV∗〉| (3.98)

We will now bound each of the terms in the right hand side. We observe that Aβ has

ωβ entries of magnitude
kβ,1

‖kβ‖
√

2ωβ
and ωβ entries of magnitude

kβ,2

‖kβ‖
√

2ωβ
. Hence, we

have ‖Aβ‖`1 ≤
√
ωβ. We consider

|〈Aβ,UU∗Aα〉| ≤ ‖Aβ‖`1 ‖UU∗Aα‖∞ (3.99)

≤ √
ωβ max

i,j
|UU∗Aα| (3.100)

≤
√
ωβ
ωα

max
i,j
|UU∗| (3.101)

We now bound the entries of UU∗:

|(UU∗)k,l| ≤
∣∣(eTkEcol)(Ecol

∗Ecol)
−1(Ecol

∗el)
∣∣

≤ ‖eTkEcol‖2
F ‖Ecol

∗Ecol‖−1

≤ ρ csR

n
,
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which gives |〈Aβ,UU∗Aα〉| ≤
√

ωβ
ωα

ρ csR
n
. Proceeding along the same lines, we obtain

|〈Aβ,AαVV∗〉| ≤
√

ωβ
ωα

ρ csR
n

and |〈UU∗AαVV∗,Aα〉| ≤
√

ωβ
ωα

ρ csR
n

. Substituting

these expressions into (3.98), we prove the Lemma.

3.12.6 Proof of Lemma 19

Proof. Proceeding with the definition of zα in (3.97), we observe that

∣∣zkαi∣∣ ≤ 2 max
k

|
〈
Ak,

n
m
PT (Aα) 〈Aα,M〉

〉
|

ωk
(3.102)

Using Lemma 23, we obtain

|〈Ab,PTAa〉| ≤
√
ωb
ωa

csr ρ

n
(3.103)

Substituting (23) in (3.102), we have
∣∣zkαi∣∣ ≤ 2csrρ

m
‖M‖A,∞. Similarly, we have

∣∣∣∣∣E
[

m∑
i=1

|zkαi |
2

]∣∣∣∣∣ =
m

n

∑
α

|zkα|2 (3.104)

Substituting (3.102) in (3.104), we have |E[
∑m

i=1 |zkαi |
2]| = (2csrρ)2

mn
‖M‖2

A,2. We have

the necessary terms to bound
∣∣∑m

i=1 zkαi
∣∣ for any k, which can bound maxk

∣∣∑m
i=1 zkαi

∣∣.
We apply [23, Lemma 11], to prove the result.

3.12.7 Upper bound for ‖P⊥T (W)‖

From the golfing scheme, we have ‖PT⊥(W)‖ ≤
∑j0

j=1 ‖PT⊥QΩiPTFj−1‖. Each of

the terms in the right hand side can be bounded as

‖PT⊥QΩiFj−1‖ = ‖PT⊥ (QΩi − I)PTFj−1‖ ≤ ‖ (QΩi − I)Fj−1‖

≤ c2

{√
n log n

m̃
‖Fj−1‖A,2 +

n log n

m̃
‖Fj−1‖A,∞

}
(3.105)

= c2

{√
n log n

m̃
‖PT (I − QΩi)PT (Fj−2)‖A,2

}
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+ c2

{
n log n

m̃
‖PT (I − QΩi)PT (Fj−2)‖A,∞

}

We used Lemma 17 in (3.105). Here, m̃ = m/j0 = |Ωj|. Substituting from Lemma

18 and Lemma 19, we get

‖PT⊥QΩiFj−1‖ ≤ c2

{√
n log n

m̃
c3

√
µ5R log n

m̃

(
‖Fj−2‖A,2 +

√
n log n

m̃
‖Fj−2‖A,∞

)}
+

c2c4 n log n

m̃

√
ρcsR log n

m̃

√
ρcsR

n
‖Fj−2‖A,2 +

c2c4 ρcsR log n

m̃
‖Fj−2‖A,∞

= c5

(√
µ5R log n

m̃
+
ρcsR log n

m̃

)j0−1

c2

√
n log n

m̃
‖F0‖A,2 +

c2n log n

m̃
‖F0‖A,∞

≤
(

1

2

)j0−1

c2

{√
n log n

m̃
‖F0‖A,2 +

n log n

m̃
‖F0‖A,∞

}
(3.106)

The last inequality holds if m̃ = m/j0 � max (µ5, ρcs)R log n. Substituting for

j0 = 3 log 1
ε
(n) assumed in the golfing scheme, we require

m� c6 max (µ5, ρcs)R log2 n (3.107)

to satisfy the above inquality. We will now focus on bounding ‖F0‖A,2 and ‖F0‖A,∞,

where F0 = UV∗.

3.12.8 Proof of Lemma 20

Proof. The proof of this theorem is in line with [23, Lemma 7]. The first term is upper

bounded by the maximum entry of the matrix (i.e, ‖UV∗‖A,∞ = maxk |(UV∗)k|).

|(UV∗)k,l| ≤
∣∣∣eTkEcol(Ecol

∗Ecol)
− 1

2 (Erow
∗Erow)−

1
2 Erowel

∣∣∣
≤ ‖eTkEcol‖F‖(Ecol

∗Ecol)
− 1

2‖ ‖(Erow
∗Erow)−

1
2‖‖Erowel‖F

≤

√
ρ2

|Λ1||Λ2|
R =

ρ csR

n
,
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We now show that the energy of each row of the matrices UV∗ and PT
(√

ωα Aα

)
are upper bounded; we use this relation to prove (3.80) and (3.81). The energy of the

rows of UV∗ are bounded as

‖eTi UV∗‖2
F = ‖eTi U‖2

F ≤
ρcsR

n
(3.108)

Similarly, by the definition of PT , we have

‖eTi PT (
√
ωαAα)‖2

F ≤ 3‖eTi UU∗(
√
ωaAa)‖2

F + 3‖eTi (
√
ωaAa)VV∗‖2

F

+3‖eTi UU∗(
√
ωaAa)VV∗‖2

F (3.109)

We now bound each of the terms in the right hand side of the above expression as

‖eTi UU∗(
√
ωαAα)‖2

F ≤ ρcsR

n

‖eTi UU∗(
√
ωαAα)VV∗‖2

F ≤ ‖eTi U‖2
F‖U‖2‖(

√
ωαAα)‖2‖VV∗‖2 ≤ ρcsR

n

‖eTi (
√
ωαAα)VV∗‖2

F ≤ ρcsR

n

Here, we use the property that the operator norm of U and
√
ωαAα are bounded by

1. Substituting in (3.109), we obtain the upper bound for the energy of the rows as

‖eTi PT (
√
ωaAa)‖2

F ≤
µ3csR

n
.

Now, applying [23, Lemma 12] that relates the upper bound of ‖M‖2
A,2 to the

upper bound of the energy of the rows maxi ‖eiM‖2, we obtain the results (3.80) and

(3.81).



www.manaraa.com

99

Substituting (3.79) and (3.80) in (3.106), we get

‖PT⊥QΩiFj−1‖ ≤
(

1

2

)j0−1

c2


√
n log n

m̃

√
c7µ3csR log2(n)

n
+
n log n

m̃

ρcsR

n


=

(
1

2

)j0−1

c2


√
c7µ3csR log3(n)

m̃
+
ρcsR log n

m̃

 (3.110)

Similar to the argument before, if m̃ = m/j0 � c7µ3csR log3 n and m̃ = m/j0 �

ρcsR log n, or equivalently m � ρcsr log2 n, we have ‖PT⊥QΩiFj−1‖ ≤
(

1
2

)j0 . Com-

bining these conditions with (3.107), we need

m� max
(
c6µ5R log2 n, c6ρ csR log2 n, c7µ3csR log3 n, ρcsr log2 n

)
. (3.111)

From (3.81), we see that the constant µ5 in Lemma 19 can be chosen as

µ5 = c7 µ3 cs log2(n) (3.112)

such that ωk‖PT (Ak)‖A,2 ≤ µ5R
n

. Substituting for µ5 from (3.112), we observe

that the dominant term is the first one due to its dependence on log4(n). Thus,

‖PT⊥QΩiFj−1‖ < 1/2 if

m > c6c7 cs (3ρ) R log4(n). (3.113)

3.13 Proof of Theorem 5

The proof is similar to that in Appendix L of [23]. The optimization problem

(3.20) can be reformulated in the lifted matrix domain as:

minimizeX ‖X‖∗ subject to
∥∥∥AΘ(X)−AΘ(T (f̂n))

∥∥∥
F
≤ δ; A⊥(X) = 0. (3.114)
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where f̂n = f̂+η are the noisy measurments, as defined in (3.19). Let X̂ = T (ĝ )+H

be the solution to (3.114), where H = AΩ(H) +AΩ⊥(H). Using (3.114), we have

‖AΩH‖F ≤ ‖AΩ(X̂− T (f̂n ))‖F + ‖AΩ(T (f̂ )− T (f̂n ))‖F ≤ 2
√
nδ

From the argument in (3.89), we only consider the case,

‖PTAΩ⊥(H)‖F ≤ 2n‖PT⊥AΩ⊥(H)‖F (3.115)

defined in 3.12.1.2 Case 2. Now, ‖T (f̂ )‖∗ ≥ ‖X̂‖∗ ≥ ‖T (f̂ )+AΩ⊥(H)‖∗−‖AΩ(H)‖∗.

From (3.91) and the treatement in Appendix L, [23], we have ‖T (f̂ )‖∗ ≥ ‖T (f̂ )‖∗+

1
6
‖PTAΩ⊥(H)‖F − ‖AΩ(H)‖∗, which gives

‖PTAΩ⊥(H)‖F ≤ 6‖AΩ(H)‖∗ ≤ 6
√
n‖AΩ(H)‖F ≤ 12nδ. Finally using (3.115),

‖H‖F ≤ ‖AΩ(H)‖F + ‖PTAΩ⊥(H)‖F + ‖PT⊥AΩ⊥(H)‖F (3.116)

≤ 2
√
nδ + 12nδ + 24n2δ ≤ cn2δ

which concludes the proof.
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CHAPTER 4
DYNAMIC MRI USING MODEL-BASED DEEP LEARNING AND

STORM PRIORS: MODL-STORM

4.1 Introduction

Cardiac cine MRI is a key component in cardiac MRI exams, which is used for the

anatomical and functional assessment of the heart. The current clinical practice is to

use breath-held acquisitions, which is often challenging for children and the patients

with chronic obstructive pulmonary disease (COPD) or obesity [42]. In addition, mul-

tiple breath-holds along with intermittent pauses also results in prolonged scan time,

adversely impacting patient comfort and compliance. Many techniques have been

proposed to reduce the breath-hold duration. Classical approaches include parallel

MRI, where the diversity of coil sensitivities are used to recover the images [56,102].

More recent approaches additionally exploit the structure of x-f space [72,105,113] as

well as the sparsity of k-space [83]. While these methods have been very successful in

breath-held and gated applications, the performance of these methods degrade in the

presence of extensive respiratory motion present in free breathing conditions. Several

group of methods that rely on radial acquisitions were introduced in the recent years,

which estimate the cardiac and respiratory phases from the central k-space regions

using band-pass filtering; the data is then binned to the respective phases, followed

by reconstruction using compressed sensing [38, 40] or low-rank tensor methods [26].

A challenge with these methods is the dependence of the performance on the accu-

rate estimation of phases using bandpass filtering using prior information about the

cardiac and respiratory rates, which may degrade in the presence of irregular respi-

ratory motion. This approach relies on the explicit segmentation of the data into the

respective phases, the applicability of the scheme to cases with arrhythmia, irregu-

lar respiratory patterns in COPD subjects, or non-cardiac applications (e.g. speech)

is not straightforward. These methods do not exploit the extensive similarity be-

tween images that are close by in the time-series, which requires the additional use of
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explicit [4, 62] or implicit motion compensation strategies [84]. Recently, deep learn-

ing frameworks are emerging as promising alternatives for inverting ill posed inverse

problems [1,29,59,68]. Recently, such a scheme had been introduced to further accel-

erate breath-held cardiac cine [103], demonstrating 11 fold reduction in breath-hold

duration. However, the direct extension of these methods to enable free breathing

and ungated setting is challenging due to the much higher required acceleration. In

addition, the current deep learning implementation [103] needs to be modified to

capitalize on the acceleration offered by multi-coil acquisitions.

We have recently introduced the SToRM [97–100] framework, which enables the

recovery of free breathing and ungated cardiac cine data. The SToRM algorithm

assumes that the images in the free-breathing dataset lie on a smooth and low-

dimensional manifold, parameterized by two variables (e.g. cardiac & respiratory

phases). The manifold regularization prior facilitates the implicit sharing of data

between images in the dataset that have similar cardiac or respiratory phases, which

is an alternative to explicit motion resolved strategies [26, 38, 40]. The acquisition

scheme relies on navigator radial spokes (acquired at each frame), which are used

to compute the graph Laplacian matrix, which captures the structure of the man-

ifold. An off-diagonal entry of the Laplacian matrix is high if the corresponding

pair of frames have similar cardiac and respiratory phases, even though they may be

well-separated in time. Since the framework does not require the associated complex

processing steps that assume the periodicity of the cardiac/respiratory motion, it is

readily applicable to several dynamic applications, including speech imaging as shown

in [97], or cardiac applications involving arrhythmia. The experiments in [97] shows

the benefit of the non-linear manifold modeling over linear subspace models such as

PSF [12]. The SToRM scheme requires approximately one minute per slice to ensure

that the image manifold is well-sampled.

The main focus of this chapter is to reduce scan time of SToRM by combining
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it with deep learned priors using the model-based deep learning (MoDL) framework.

The MoDL approach, which was originally designed for static applications, formu-

lates image recovery as a variational optimization problem [1, 2]; the cost function

involved the combination of a data consistency term an a deep learned prior. An

alternating minimization scheme to solve the cost function resulted in a deep ar-

chitecture, which alternates between data-consistency and deep learning sub-blocks.

MoDL facilitates the combination of information from multi-coil acquisitions in a

straight-forward SENSE like approach. MoDL includes conjugate gradients (CG)

algorithm within the network to enforce data-consistency, which offers significantly

faster reduction of data consistency cost than approaches that rely on steepest de-

scent updates [53]; the improved convergence translates to improved reconstructions

compared to steepest descent strategies for a specified number of iterations that can

be fitted on a GPU device [1,2]. The main difference of MoDL with other model-based

strategies [29,103] is the sharing of weights across iterations, which reduces the train-

ing data required by around ten fold; this desirable feature facilitates the application

of MoDL to the current problem, where training data is scarce. The performance

of this end-to-end learning scheme is significantly better than other plug-and-play

schemes that use pre-learned CNN based denoisers. Another benefit of MoDL formu-

lation, which enforces data-consistency, is the ability to re-use the learned network for

slight changes in acquisition settings, compared to black-box schemes [19, 123]. This

is especially important in the current setting since different images in the dynamic

dataset are acquired with different radial sampling masks.

The proposed MoDL-SToRM cost function consists of a data consistency term, a

deep learning prior that can learn population generalizable information, as well as the

SToRM prior that exploits subject specific information. While we used the SToRM

prior in this work, this framework is general enough to be used with most other regu-

larization functionals (e.g. low-rank, dictionary learning [44,55,78]). The CNN based



www.manaraa.com

104

prior exploits local image redundancies of the 2D+time dataset, which is not specific

to respiratory patterns or cardiac motion information of the specific subject. By con-

trast, the SToRM prior facilitates the exploitation of non-local redundancies between

images in the dataset, which are specific to the cardiac and respiratory patterns of

the specific subject. The combination of deep learning with other complementary

priors in the context of free-breathing image reconstruction is not reported in the

literature, to the best of our knowledge. This is facilitated by MoDL, which uses a

CG block within the deep network that provides fast reduction in data consistency

cost when multi-coil forward model is used compared to proximal gradients based

algorithms used in [54]. We performed an end-to-end training strategy using SToRM

reconstructions from the long acquisition as training data. The combination of these

complementary priors facilitates the recovery from highly undersampled measure-

ments, thus reducing the acquisition time by 5-10 fold over current SToRM schemes.

The basic formulation of this method was presented in conference version [8] with

proof-of-principle simulations. In contrast to [8], the current work introduces signifi-

cantly improved and optimized formulation, in addition to generalizing it for parallel

MRI.

4.2 Methods

4.2.1 Acquisition scheme

Four healthy volunteers instructed to breathe normally were scanned at the

Siemens Aera scanner in the University of Iowa hospitals to generate prospectively

undersampled free-breathing ungated radial dataset. The data was acquired using a

FLASH sequence with a 32 channel cardiac array. The scan parameters were TR/TE

= 4.2/2.2ms, number of slices = 5, slice thickness = 5 mm, FOV = 300mm, spatial

resolution = 1.17 mm. A temporal resolution of 42 ms was obtained by binning 10

consecutive lines of k-space per frame, including 4 uniform navigator lines. Each slice

comprised of 10000 radial lines of the k-space binned to 1000 frames, resulting in an
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acquisition time of 42s. The raw k-space data was interpolated to a Cartesian grid

and 7 virtual coils were approximated out of the initial 32 using a SVD based coil-

compression technique. The coil sensitivity maps were estimated from the compressed

data using ESPIRiT [115]. On the Cartesian interpolated raw k-space data from the

long scan free breathing dataset, was the state of the art SToRM [97] applied to

establish our ground truth and was used as the reference to train the deep networks.

We use subsets of the above data to demonstrate the utility of the proposed

scheme. We consider reconstructions from 1000 and 2000 spokes, which correspond

to 4.2 seconds and 8.4 second acquisition time, respectively. We used two virtual

channels for the proposed scheme to keep the memory demand of the optimization

low.

4.2.2 MoDL-SToRM: formulation

We generalize the model-based deep learning framework (MoDL) by adding a

SToRM prior:

C(X) = ‖A(X)−B‖2
2︸ ︷︷ ︸

data consistency

+
λ1

2
‖Nw(X)‖2︸ ︷︷ ︸
CNN prior

+
λ2

2
tr
(
XTLX

)︸ ︷︷ ︸
SToRM prior

. (4.1)

Here, A is the multi-channel Fourier sampling operator, which includes coil sensitivity

weighting. Nw is a 3-D CNN based estimator that estimates the noise and alias

patterns in the dataset from local neighborhoods of the 2D+time dataset; ‖Nw(x)‖2

is a measure of the alias/noise contribution in the dataset X [1]. The denoised signal

can thus be estimated from the data X as

Dw(X) = (I −Nw) (X) = X−Nw(X). (4.2)



www.manaraa.com

106

The SToRM prior tr
(
XTLX

)
, exploits the similarities beyond the local neighborhood.

The manifold Laplacian, L = D −W is estimated from the k-space navigators [97].

The diagonal matrix D is specified as D(i,i) =
∑

j W(i,j), where W is a weight matrix,

such that, the weight W(i,j) is high when xi and xj have similar cardiac and/or

respiratory phase. tr is the trace operator.

4.2.3 Alternating minimization algorithm

We expand the SToRM penalty as

2tr(XTLX) = 2tr
(
XT [D−W]X

)
= 2tr(XTDX)− 2tr

XT WX︸︷︷︸
Q


We consider auxiliary variables Y = Dw(X) and Q = WX and rewrite (4.1) as:

C(X,Z,Y) = ‖A(X)−B‖2
2 +

λ1

2
‖X−Y︸ ︷︷ ︸
Nw(X)

‖2 +

λ2

(
tr(XTDX)− tr(XTQ)

)
Minimizing the objective with respect to X, assuming the auxiliary variables Y and

Q to be fixed, yields the normal equations

∇XC = A∗(A(X)−B) + λ1(X−Y) + λ2 (DX−Q) = 0 (4.3)

where A∗ is the adjoint of A. This can be solved as

X = (A∗A+ λ1I + λ2D)−1 (A∗(B) + λ1 Y + λ2 Q)︸ ︷︷ ︸
R

(4.4)

As D is diagonal, (A∗A+ λ1I + λ2D)−1 can be implemented on a frame-by-frame

basis. Since the operator in the multi-coil setting is not analytically invertible, we
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solve for (4.4) for each frame of X using conjugate gradients optimization. This

provides us with an alternating algorithm:

Yn = Dw(Xn) (4.5)

Qn = WXn (4.6)

Rn = (A∗(B) + λ1Yn + λ2Qn) (4.7)

Xn+1 = (A∗A+ λ1I + λ2D)−1Rn. (4.8)

Once the number of iterations, specified by N , of the alternating minimization is

fixed, the network can be unrolled to yield a deep network as shown in Fig 4.1(b).

The weights of the deep network Dw and the optimization parameters λ1 and λ2 are

trainable and shared throughout the iterations. To limit N , we initialize the network

input with the SToRM (100 or 200 frames) solution:

X0 = arg min
X
‖A(X)−B‖2

2 +
η

2
tr
(
XTLX

)
, (4.9)

where η was chosen manually. Since this initialization is significantly better than

the one obtained using gridding, the iterative algorithm (4.5)-(4.8) yields improved

reconstructions with small N .

The conference submission laid the groundwork for integrating MoDL and SToRM

formulations [8]. However, the setting in [8] was fundamentally different. We re-

stricted ourselves to a single coil setting in [8], where the forward operator A had

an analytical inverse as in [103]. Furthermore, the framework was tested using ret-

rospectively undersampled measurements of SToRM reconstructed images; the train-

ing goal was to reconstruct the images from 16 fold retrospectively undersampled

SToRM data. Since this acceleration is not sufficient to enable free-breathing acqui-

sitions, we moved to multi-coil setting with CG algorithm to enforce the multi-coil
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data-consistency constraint.

4.2.4 Network and training details

Lagged update of Qn: The training scheme requires the storage of Yn, Qn, and

Xn. The update of Yn using CNN as in (4.5) is local in nature, and hence only require

few adjacent frames that depends on the receptive field of the network. Similarly, the

DC update step (4.8) can be computed frame-by-frame. By contrast, the update step

for Qn in (4.6) is global in nature and requires the entire dataset (100-200 frames).

The straightforward training of the unrolled architecture in Fig. 4.1(b) hence require

all of these intermediate variables stored onboard the GPU, which is infeasible.

For training in a memory constrained setting, we proposed a lagged approach

shown in figure 4.1(c), where Qn is updated less frequently during training. We con-

sider an outer loop where Qn is updated by making a forward pass through the net-

work, assuming known network parameters. The Qn, each corresponding to 100/200

frames, are then stored in the computer memory and assumed to be fixed during the

inner iterations (N). The trainable network parameters specified by w, λ1 and λ2 are

optimized using Adam [65] in the inner loop on the GPU. We form batches consisting

of fewer frames (7 frames) and the corresponding frames of the pre-computed Qn for

training. Following convergence of (4.3) (inner-loop) for a fixed Qn, we update Qn

and re-train the network, assuming the network parameters from the previous outer

iteration as the initialization. We need multiple outer iterations for the training

procedure to converge.

Training data set: The data was acquired on four healthy volunteers, each but

one with two different views–short axis and four chamber view– resulting in a total of

seven datasets. We used the data from four datasets for training and remaining three

for testing. We extracted 6(3) non-overlapping groups of 100(200) frames each from

the above datasets, which were used for training. The SToRM reconstruction of the

datasets from 1000 frames are considered as reference data. Whereas, the input to
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the network was X0, the solution to (4.9) computed with reduced number of frames

(100 or 200).

Trainable parameters of the network: The CNN block specified by Dw consists

of a 6 layer CNN with 64 filters of dimensions 3×3×3 in the first five layers, followed

by two 3× 3 filters in last layer. To deal with complex data, the real and imaginary

part of the frames were passed as two channels of the input tensor. The total number

of trainable parameters in the network is 151666 real variables, which is roughly two

256x256 images. The sharing of the parameters across iterations allows us to obtain

good performance with such a network, while significantly reducing the training data

demand [1].

Training strategy: The network was trained with the Adam optimizer on mean

squared error loss, implemented on TensorFlow and trained on a NVIDIA P100 GPU.

We first trained a model N = 1. Following a single iteration training, we considered

a multi-iteration model (N > 1). There, the learned filters in the network Dw were

initialized by the parameters learned with N = 1.

We observed that a network with two iterations was sufficient to provide good

reconstructions; the performance saturated beyond two repetitions. We trained for

N = 1 with 100 epochs, which took 9 hours on the GPU. The second training scheme

with N = 2 was trained with 100 epochs, resulting in a run time of 26 hours, including

the Q update with Nout = 2. The total training time was 35 hours. The final inference

for 8.4 s of data was from a single forward pass containing N = 2 repetitions, which

takes around 14× (N − 1) seconds on the GPU. This is significantly faster than most

compressed sensing reconstructions.

We also trained a MoDL-alone scheme for comparison, where we initially trained a

single repetition MoDL scheme with 100 epochs (9 hours). Here, we chose X0 = A∗B.

Whereas in MoDL-SToRM X0 = (A∗A + ηL)−1A∗B. The training of the N = 2

repetition model with the initialization from the previous step was run for 80 epochs,
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till the loss and testing performance saturated, which took another 18 hours. Since

we chose the same number of batches for training for both the datasets, the training

time was same for both 4.2s and 8.4s datasets.

4.2.5 Experiments

We compared the proposed MoDL-SToRM reconstruction scheme against (a)

SToRM alone (b) MoDL alone (c) Tikhonov-SToRM. Tikhonov-SToRM is spatially

TV-regularized SToRM formulated as (4.10), where ∇ is the 2D spatial TV operator.

X0 = arg min
X
‖A(X)−B‖2

2 +
λtikh

2
‖∇X‖2 +

η

2
tr
(
XTLX

)
, (4.10)

We consider reconstructions from 100 and 200 frames, corresponding to 4.2sec

and 8.4sec of acquisition time, respectively. The quantitative comparisons are shown

in Table 1. The size of the network was fixed based on the available training data as

well as the available memory on the GPU. Note that the total number of trainable

parameters were same for MoDL and MoDL-SToRM strategies.

All comparisons are made with SToRM reconstructions from 1000 frames (42s)

using the signal to error ratio metric (in addition to the standard PSNR and SSIM)

defined as

SER = 20 log10

(
‖X1000‖

‖X1000 −X‖

)
, (4.11)

where X1000 denotes the reconstruction from 1000 frames and X is the specific recon-

struction. The visual comparisons of the reconstructed images, their time profiles,

and error images with SToRM reconstructions from 1000 frames as ground truth, are

shown in Fig. 4.2, 4.3, and 4.4.
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4.3 Results

4.3.1 Selection of parameters

Number of iterations N : We observe that the performance of MoDL-SToRM sat-

urates with N . For example, for test dataset 1, we obtained PSNR of 33.34 dB for

N = 0, which is the SToRM initialization specified by X0. The single iteration train-

ing (N = 1) resulted in 38.7 dB, which is a 5dB improvement over SToRM. N = 2

gave 39.04 dB, while N = 3 only gave 39.02 suggesting a saturation in performance

beyond N = 2. The change in performance from N = 2 to N = 3 was negligible and

with the given network size and batch dimensions, we couldn’t go beyond N = 3.

Number of outer iterations in training Nout: We observe that few outer itera-

tions were sufficient for the training to converge. We obtained PSNR of 37.78 dB for

the first outer iteration Nout = 1, 39.04 dB for Nout = 2, and 39.00 dB for Nout = 3,

all with N = 2 inner iterations. The change in performance from Nout = 2 to Nout = 3

was negligible and hence the Nout was limited to 2, as it would unnecessarily increase

the proposed training time. Similar trend was observed when trained with 8.4s of

data.

Comparisons with other methods: The comparisons of the reconstructions from

100 frames in Fig. 4.3 show that the proposed reconstruction provides the most accu-

rate reconstructions, revealed by the reduced errors and improved SER. We observe

that the performance of SToRM suffers when the number of frames are reduced,

evidenced by the high amount of noise like alias artifacts resulting from radial under-

sampling. MoDL only uses local information and is hence not able to provide high

quality reconstructions for such high accelerations; however, we expect the MoDL to

work well in breath-held applications such as [103]. This signifies the need of the

additional SToRM prior, which can exploit the non-local redundancy a simple CNN

model cannot capture.

The comparisons of the methods with 8.4s of data in Fig. 4.4 shows a similar
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trend as in Fig. 4.3, albeit with all methods exhibiting improved reconstructions due

to increased number of frames. The improved performance of SToRM with increasing

frames translate to improved reconstructions.

Also, for all datasets, it is the proposed reconstruction that is comparable to the

SToRM reconstructions from 42s of data as opposed to the direct SToRM recon-

struction on the short scan. This is expected, because for a short scan, each frame

would have insufficient neighbors for SToRM prior to successfully work. Whereas

in proposed scheme, the reconstruction burden is shared between SToRM and local

denoiser, Dw.

4.4 Discussion & conclusion

We introduced a model-based framework that can accommodate learnable priors

along with conventional regularizers for inverse problems in MRI reconstruction. It

is proposed to recover free breathing and ungated cardiac MRI data from radial

acquisitions, using a learned 3-D CNN prior and a SToRM regularizer. The CNN

exploits local population-generalizable redundancies, while the SToRM prior enables

the use of patient specific non-local redundancies that depend on the cardiac and

respiratory patterns. We used an alternating algorithm to minimize the cost, which

when unrolled yields a deep network. The network includes conjugate gradient blocks

that encourages the consistency of the current iterate with the measured data, in

addition to denoiser blocks.

Our experiments show that very few iterations of (4.5)-(4.8) is sufficient to pro-

vide good reconstructions. This fast saturation of performance is mainly due to the

initialization of the X0 with the solution to (4.9) and the use of CG algorithm within

the network, which facilitates the fast reduction of data consistency cost. A lot of

iterations would have been needed if an architecture based on proximal gradients [54]

was used.

The improved performance in the context of limited training data can be at-
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tributed to the trainable parameters in the network, shared across iterations. MoDL-

SToRM in free breathing and ungated cardiac MRI enables a significant reduction

in scan time, compared to SToRM. The reconstruction is also relatively fast, recon-

structing 200 frames in around 30 seconds on a P100 GPU. While we focused on

combining deep learned priors with SToRM, this framework can be generalized with

other priors.
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Dataset Method SER (dB) PSNR (dB) SSIM

SToRM 12.64 33.33 0.775

Subject 1 MoDL 3.35 23.12 0.4212

(4.2s) Tikhonov 16.92 37.61 0.8871

Proposed 18.35 39.04 0.8933

SToRM 16.31 37.31 0.8868

Subject 1 MoDL 3.88 23.25 0.4301

(8.4s) Tikhonov 18.78 39.77 0.9205

Proposed 19.89 40.88 0.9297

SToRM 11.34 30.40 0.725

Subject 2 MoDL 2.78 21.84 0.289

(4.2s) Tikhonov 13.39 32.87 0.8379

Proposed 16.80 35.86 0.8454

SToRM 14.54 33.33 0.8161

Subject 2 MoDL 4.37 23.21 0.3215

(8.4s) Tikhonov 16.65 35.49 0.8809

Proposed 19.82 38.67 0.9079

SToRM 13.42 30.52 0.7055

Subject 3 MoDL 4.58 21.69 0.3754

(4.2s) Tikhonov 15.99 33.10 0.8397

Proposed 18.69 35.80 0.8483

SToRM 17.09 34.19 0.8345

Subject 3 MoDL 4.56 21.66 0.3725

(8.4s) Tikhonov 17.35 34.45 0.8934

Proposed 20.17 37.27 0.8998

Table 1: Comparing reconstruction methods for all test subjects across different recovery

metrics.



www.manaraa.com

115

+

ConvConv BN ReLU ConvConv BN ReLU

SToRM

DC

Repeat

Iterate

(a)

Iterate

Shared wts.

Iter 1 Iter N

(b)
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Figure 4.1: (a) Proposed iterative model: the iterative algorithm alternates between the
denoising of the dataset using local CNN block denoted by Dw, SToRM update denoted by
WXn, and the DC block involving conjugate gradients to enforce data-consistency at each
iteration. (b) Deep network obtained by unrolling the iterations in (a). A difference of this
scheme with current model-based schemes is the sharing of the weights across iterations as
well as the use of CG blocks to enforce the data-consistency, when complex forward models
such as multi-channel sampling is used (c) Training strategy with lagged update of Qn:
unlike DC and Dw that involves local operations, the update of Qn is global in nature;
the direct implementation of the unrolled network in (b) is associated with high memory
demand and is infeasible on current GPU devices. We propose to pre-compute Qn in an
outer-loop and store them in the computer memory.
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Figure 4.2: Dataset 1: (a) Full view of a single frame from the SToRM reconstructions
using 1000 frames. Only (red) cropped Myocardium region is shown. (b) Top row:
SToRM reconstruction using 1000 frames. Following eight rows are four sets of com-
peting reconstructions and corresponding error (w.r.t to top row) images : i) SToRM
reconstruction with 100 frames ii) MoDL with 100 frames, iii) Tikhonov-SToRM with
100 frames and iv) proposed with 100 frames. First column is the time profile along
a vertical cut across the Myocardium shown in green in (a). Following six columns
show three cardiac states at two different respiratory stages. The positions of those
two respiratory stages are marked blue and green on the time profiles, in the first
column. Three cardiac states are neighboring frames near those two marked time
points.
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Figure 4.3: Dataset 1: (a) Full view of a single frame from the SToRM reconstruction
using 1000 frames. Only (red) cropped Myocardium region is shown. (b) Top row:
SToRM reconstruction using 1000 frames. Following eight rows are four sets of com-
peting reconstructions and corresponding error (w.r.t to top row) images : i) SToRM
reconstruction with 200 frames ii) MoDL with 200 frames, iii) Tikhonov-SToRM with
100 frames and iv) proposed with 200 frames. First column is the time profile along
a vertical cut across the Myocardium shown in green in (a). Following six columns
show three cardiac states at two different respiratory stages. The positions of those
two respiratory stages are marked blue and green on the time profiles, in the first
column. Three cardiac states are neighboring frames near those two marked time
points.
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Figure 4.4: Dataset 2: (a) Full view of a single frame from the SToRM reconstruction
using 1000 frames. Only (red) cropped Myocardium region is shown. (b) Top row:
SToRM reconstruction using 1000 frames. Following eight rows are four sets of com-
peting reconstructions and corresponding error (w.r.t to top row) images : i) SToRM
reconstruction with 200 frames ii) MoDL with 200 frames, iii) Tikhonov-SToRM with
100 frames and iv) proposed with 200 frames. First column is the time profile along
a vertical cut across the Myocardium shown in green in (a). Following six columns
show three cardiac states at two different respiratory stages. The positions of those
two respiratory stages are marked blue and green on the time profiles, in the first
column. Three cardiac states are neighboring frames near those two marked time
points.
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CHAPTER 5
CONCLUSIONS & FUTURE DIRECTIONS

5.1 Conclusions

In this thesis, we studied the inverse problems involving reconstruction of structured

images. We considered scenarios, where the object of interest, had known underlying struc-

tures, like, low-rankedness coming from spatiotemporal redundancy, sparsity through gra-

dient transformation, piecewise constant property of structural MR images and so on. We

capitalized on these structures to budget our number of signal observations, while maintain-

ing reconstruction quality from those limited observations. Towards this end, we applied

self-learned strategies, where the aforementioned structures were directly exploited in the

reconstruction optimization problem. We also enforced exemplar learning, where recon-

struction of one image is based on the properties learned from a set of training images. In

particular, we studied three particular structures arising from three particular application

problems.

First, we introduced a two step algorithm with recovery guarantees to reconstruct a low

rank and jointly sparse matrix from its under sampled measurements. The results show

that under simple assumptions, the two step recovery scheme is guaranteed to provide good

recovery of the matrix. The application of the scheme to the recovery free breathing CINE

data demonstrates the utility of the scheme in practical applications.

Second, we derived a performance guarantee for the recovery of piecewise constant

images from non-uniform Fourier samples by a structured matrix completion. This was

achieved by adapting results in [23] to the case of a low-rank multifold Toeplitz structure

with an additional weighting scheme. We also define new incoherence measures that rely

only on properties of the minimal annihilating polynomial whose zero-set encodes the edges

of the image.

Third, we introduced model based dynamic MR reconstruction for free breathing and

ungated cardiac MRI. The proposed framework enables the seamless integration of deep

learned architectures with other regularization terms. It additionally exploits the prior

information that is subject dependent (e.g. due to respiratory variations and cardiac rate).
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We showed that the proposed framework enables us to significantly reduce the acquisition

time in free breathing approaches.

5.2 Future Directions

The theoretical guarantees for the two-step algorithm were established with an assump-

tion of the absence of noise. In the future, we will address the robustness analysis.

The recovery guarantees for the piecewise constant images were studied for the set of

uniform random samples. In the future, we hope to extend the results to a wider variety of

sampling distributions and to identify the optimal sampling strategy for signals belonging

to our image model. Also, the recovery error in the presence of bounded noise was stated

in terms of the error in the recovered lifted matrices. It would be interesting to bound the

error in the recovered edge set compared to the true edge set, that defines the underlying

continuous domain image.

When studying the exemplar learning, we focused on combining deep learned priors with

a particular manifold embedding prior, namely SToRM. Our framework can be generalized

with other priors, suited for wider applications. It would be interesting to demonstrate this

generalization, in the future.
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